The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A study of the mean value of the error term in the mean square formula of the Riemann zeta-function in the critical strip 3 / 4 σ < 1

Ternary quadratic forms with rational zeros

John Friedlander, Henryk Iwaniec (2010)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We consider the Legendre quadratic forms ϕ a b ( x , y , z ) = a x 2 + b y 2 - z 2 and, in particular, a question posed by J–P. Serre, to count the number of pairs of integers 1 a A , 1 b B , for which the form ϕ a b has a non-trivial rational zero. Under certain mild conditions on the integers a , b , we are able to find the asymptotic formula for the number of such forms.

Landau’s function for one million billions

Marc Deléglise, Jean-Louis Nicolas, Paul Zimmermann (2008)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let 𝔖 n denote the symmetric group with n letters, and g ( n ) the maximal order of an element of 𝔖 n . If the standard factorization of M into primes is M = q 1 α 1 q 2 α 2 ... q k α k , we define ( M ) to be q 1 α 1 + q 2 α 2 + ... + q k α k ; one century ago, E. Landau proved that g ( n ) = max ( M ) n M and that, when n goes to infinity, log g ( n ) n log ( n ) . There exists a basic algorithm to compute g ( n ) for 1 n N ; its running time is 𝒪 N 3 / 2 / log N and the needed memory is 𝒪 ( N ) ; it allows computing g ( n ) up to, say, one million. We describe an algorithm to calculate g ( n ) for n up to 10 15 . The main idea is to use the...