On the generalized principal ideal theorem of complex multiplication

Reinhard Schertz[1]

  • [1] Institut für Mathematik der Universität Augsburg Universitätsstraße 8 86159 Augsburg, Germany

Journal de Théorie des Nombres de Bordeaux (2006)

  • Volume: 18, Issue: 3, page 683-691
  • ISSN: 1246-7405

Abstract

top
In the p n -th cyclotomic field p n , p a prime number, n , the prime p is totally ramified and the only ideal above p is generated by ω n = ζ p n - 1 , with the primitive p n -th root of unity ζ p n = e 2 π i p n . Moreover these numbers represent a norm coherent set, i.e. N p n + 1 / p n ( ω n + 1 ) = ω n . It is the aim of this article to establish a similar result for the ray class field K 𝔭 n of conductor 𝔭 n over an imaginary quadratic number field K where 𝔭 n is the power of a prime ideal in K . Therefore the exponential function has to be replaced by a suitable elliptic function.

How to cite

top

Schertz, Reinhard. "On the generalized principal ideal theorem of complex multiplication." Journal de Théorie des Nombres de Bordeaux 18.3 (2006): 683-691. <http://eudml.org/doc/249659>.

@article{Schertz2006,
abstract = {In the $p^n$-th cyclotomic field $\mathbb\{Q\}_\{p^n\},~p$ a prime number, $n\in \mathbb\{N\}$, the prime $p$ is totally ramified and the only ideal above $p$ is generated by $\omega _n=\zeta _\{p^n\}-1$, with the primitive $p^n$-th root of unity $\zeta _\{p^n\}=e^\{\frac\{2\pi i\}\{p^n\}\}$. Moreover these numbers represent a norm coherent set, i.e. $\mbox \{\text\{\large \textbf\{N\}\}\}_\{\mathbb\{Q\}_\{p^\{n+1\}\}\}/\mathbb\{Q\}_\{p^n\}(\omega _\{n+1\})=\omega _n$. It is the aim of this article to establish a similar result for the ray class field $K_\{\{\mathfrak\{p\}\}^n\} $ of conductor $\{\mathfrak\{p\}\}^n$ over an imaginary quadratic number field $K$ where $\{\mathfrak\{p\}\}^n$ is the power of a prime ideal in $K$. Therefore the exponential function has to be replaced by a suitable elliptic function.},
affiliation = {Institut für Mathematik der Universität Augsburg Universitätsstraße 8 86159 Augsburg, Germany},
author = {Schertz, Reinhard},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {class field theory; cyclotomic extensions; quadratic extensions; complex multiplication},
language = {eng},
number = {3},
pages = {683-691},
publisher = {Université Bordeaux 1},
title = {On the generalized principal ideal theorem of complex multiplication},
url = {http://eudml.org/doc/249659},
volume = {18},
year = {2006},
}

TY - JOUR
AU - Schertz, Reinhard
TI - On the generalized principal ideal theorem of complex multiplication
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 3
SP - 683
EP - 691
AB - In the $p^n$-th cyclotomic field $\mathbb{Q}_{p^n},~p$ a prime number, $n\in \mathbb{N}$, the prime $p$ is totally ramified and the only ideal above $p$ is generated by $\omega _n=\zeta _{p^n}-1$, with the primitive $p^n$-th root of unity $\zeta _{p^n}=e^{\frac{2\pi i}{p^n}}$. Moreover these numbers represent a norm coherent set, i.e. $\mbox {\text{\large \textbf{N}}}_{\mathbb{Q}_{p^{n+1}}}/\mathbb{Q}_{p^n}(\omega _{n+1})=\omega _n$. It is the aim of this article to establish a similar result for the ray class field $K_{{\mathfrak{p}}^n} $ of conductor ${\mathfrak{p}}^n$ over an imaginary quadratic number field $K$ where ${\mathfrak{p}}^n$ is the power of a prime ideal in $K$. Therefore the exponential function has to be replaced by a suitable elliptic function.
LA - eng
KW - class field theory; cyclotomic extensions; quadratic extensions; complex multiplication
UR - http://eudml.org/doc/249659
ER -

References

top
  1. S. Bettner, R. Schertz, Lower powers of elliptic units. Journal de Théorie des Nombres de Bordeaux 13 (2001), 339–351. Zbl1003.11026MR1879662
  2. R. Schertz, Konstruktion von Potenzganzheitsbasen in Strahlklassenkörpern über imaginär-quadratischen Zahlkörpern. J. Reine Angew. Math. 398 (1989), 105–129. Zbl0666.12006MR998475
  3. R. Schertz, Zur expliziten Berechnung von Ganzheitsbasen in Strahlklassenkörpern über einem imaginär-quadratischen Zahlkörper. Journal of Number Theory, Vol. 34 No. 1 (1990). Zbl0701.11059MR1039766
  4. R. Schertz, An Elliptic Resolvent. Journal of Number Theory, Vol. 77 (1999), 97–121. Zbl0953.11034MR1695703

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.