Displaying similar documents to “On the generalized principal ideal theorem of complex multiplication”

Weber’s class number problem in the cyclotomic 2 -extension of , II

Takashi Fukuda, Keiichi Komatsu (2010)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let h n denote the class number of n -th layer of the cyclotomic 2 -extension of . Weber proved that h n ( n 1 ) is odd and Horie proved that h n ( n 1 ) is not divisible by a prime number satisfying 3 , 5 ( mod 8 ) . In a previous paper, the authors showed that h n ( n 1 ) is not divisible by a prime number less than 10 7 . In this paper, by investigating properties of a special unit more precisely, we show that h n ( n 1 ) is not divisible by a prime number less than 1 . 2 · 10 8 . Our argument also leads to the conclusion that h n ( n 1 ) is not divisible by...

A system of simultaneous congruences arising from trinomial exponential sums

Todd Cochrane, Jeremy Coffelt, Christopher Pinner (2006)

Journal de Théorie des Nombres de Bordeaux

Similarity:

For a prime p and positive integers < k < h < p with d = ( h , k , , p - 1 ) , we show that M , the number of simultaneous solutions x , y , z , w in p * to x h + y h = z h + w h , x k + y k = z k + w k , x + y = z + w , satisfies M 3 d 2 ( p - 1 ) 2 + 25 h k ( p - 1 ) . When h k = o ( p d 2 ) we obtain a precise asymptotic count on M . This leads to the new twisted exponential sum bound x = 1 p - 1 χ ( x ) e 2 π i f ( x ) / p 3 1 4 d 1 2 p 7 8 + 5 h k 1 4 p 5 8 , for trinomials f = a x h + b x k + c x , and to results on the average size of such sums.

Hilbert-Speiser number fields and Stickelberger ideals

Humio Ichimura (2009)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let p be a prime number. We say that a number field F satisfies the condition ( H p n ) when any abelian extension N / F of exponent dividing p n has a normal integral basis with respect to the ring of p -integers. We also say that F satisfies ( H p ) when it satisfies ( H p n ) for all n 1 . It is known that the rationals satisfy ( H p ) for all prime numbers p . In this paper, we give a simple condition for a number field F to satisfy ( H p n ) in terms of the ideal class group of K = F ( ζ p n ) and a “Stickelberger ideal” associated to the...

Kloosterman sums for prime powers in -adic fields

Stanley J. Gurak (2009)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let K be a field of degree n over Q p , the field of rational p -adic numbers, say with residue degree f , ramification index e and differential exponent d . Let O be the ring of integers of K and P its unique prime ideal. The trace and norm maps for K / Q p are denoted T r and N , respectively. Fix q = p r , a power of a prime p , and let η be a numerical character defined modulo q and of order o ( η ) . The character η extends to the ring of p -adic integers p in the natural way; namely η ( u ) = η ( u ˜ ) , where u ˜ denotes the residue...

On the trace of the ring of integers of an abelian number field

Kurt Girstmair (1992)

Acta Arithmetica

Similarity:

Let K, L be algebraic number fields with K ⊆ L, and O K , O L their respective rings of integers. We consider the trace map T = T L / K : L K and the O K -ideal T ( O L ) O K . By I(L/K) we denote the group indexof T ( O L ) in O K (i.e., the norm of T ( O L ) over ℚ). It seems to be difficult to determine I(L/K) in the general case. If K and L are absolutely abelian number fields, however, we obtain a fairly explicit description of the number I(L/K). This is a consequence of our description of the Galois module structure of T ( O L ) (Theorem 1)....