Badly approximable systems of linear forms over a field of formal series
- [1] Department of Mathematical Sciences Faculty of Science University of Aarhus Ny Munkegade, Building 530 8000 Aarhus C, Denmark
Journal de Théorie des Nombres de Bordeaux (2006)
- Volume: 18, Issue: 2, page 421-444
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topKristensen, Simon. "Badly approximable systems of linear forms over a field of formal series." Journal de Théorie des Nombres de Bordeaux 18.2 (2006): 421-444. <http://eudml.org/doc/249662>.
@article{Kristensen2006,
abstract = {We prove that the Hausdorff dimension of the set of badly approximable systems of $m$ linear forms in $n$ variables over the field of Laurent series with coefficients from a finite field is maximal. This is an analogue of Schmidt’s multi-dimensional generalisation of Jarník’s Theorem on badly approximable numbers.},
affiliation = {Department of Mathematical Sciences Faculty of Science University of Aarhus Ny Munkegade, Building 530 8000 Aarhus C, Denmark},
author = {Kristensen, Simon},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Laurent series; badly approximable systems; -games; Hausdorff dimension; Jarnik's theorem},
language = {eng},
number = {2},
pages = {421-444},
publisher = {Université Bordeaux 1},
title = {Badly approximable systems of linear forms over a field of formal series},
url = {http://eudml.org/doc/249662},
volume = {18},
year = {2006},
}
TY - JOUR
AU - Kristensen, Simon
TI - Badly approximable systems of linear forms over a field of formal series
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 2
SP - 421
EP - 444
AB - We prove that the Hausdorff dimension of the set of badly approximable systems of $m$ linear forms in $n$ variables over the field of Laurent series with coefficients from a finite field is maximal. This is an analogue of Schmidt’s multi-dimensional generalisation of Jarník’s Theorem on badly approximable numbers.
LA - eng
KW - Laurent series; badly approximable systems; -games; Hausdorff dimension; Jarnik's theorem
UR - http://eudml.org/doc/249662
ER -
References
top- A. G. Abercrombie, Badly approximable -adic integers. Proc. Indian Acad. Sci. Math. Sci. 105 (2) (1995), 123–134. Zbl0856.11035MR1350472
- M. Amou, A metrical result on transcendence measures in certain fields. J. Number Theory 59 (2) (1996), 389–397. Zbl0867.11055MR1402615
- J. W. S. Cassels, An introduction to the geometry of numbers. Springer-Verlag, Berlin, 1997. Zbl0866.11041MR1434478
- V. Jarník, Zur metrischen Theorie der diophantischen Approximationen. Prace Mat.–Fiz. (1928–1929), 91–106.
- S. Kristensen, On the well-approximable matrices over a field of formal series. Math. Proc. Cambridge Philos. Soc. 135 (2) (2003), 255–268. Zbl1088.11056MR2006063
- S. Lang, Algebra (2nd Edition). Addison-Wesley Publishing Co., Reading, Mass., 1984. Zbl0712.00001MR783636
- K. Mahler, An analogue to Minkowski’s geometry of numbers in a field of series. Ann. of Math. (2) 42 (1941), 488–522. Zbl0027.16001MR4272
- H. Niederreiter, M. Vielhaber, Linear complexity profiles: Hausdorff dimensions for almost perfect profiles and measures for general profiles. J. Complexity 13 (3) (1997), 353–383. Zbl0934.94013MR1475570
- W. M. Schmidt, On badly approximable numbers and certain games. Trans. Amer. Math. Soc. 123 (1966), 178–199. Zbl0232.10029MR195595
- W. M. Schmidt, Badly approximable systems of linear forms, J. Number Theory 1 (1969), 139–154. Zbl0172.06401MR248090
- V. G. Sprindžuk, Mahler’s problem in metric number theory. American Mathematical Society, Providence, R.I., 1969. Zbl0181.05502MR245527
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.