Badly approximable systems of linear forms over a field of formal series

Simon Kristensen[1]

  • [1] Department of Mathematical Sciences Faculty of Science University of Aarhus Ny Munkegade, Building 530 8000 Aarhus C, Denmark

Journal de Théorie des Nombres de Bordeaux (2006)

  • Volume: 18, Issue: 2, page 421-444
  • ISSN: 1246-7405

Abstract

top
We prove that the Hausdorff dimension of the set of badly approximable systems of m linear forms in n variables over the field of Laurent series with coefficients from a finite field is maximal. This is an analogue of Schmidt’s multi-dimensional generalisation of Jarník’s Theorem on badly approximable numbers.

How to cite

top

Kristensen, Simon. "Badly approximable systems of linear forms over a field of formal series." Journal de Théorie des Nombres de Bordeaux 18.2 (2006): 421-444. <http://eudml.org/doc/249662>.

@article{Kristensen2006,
abstract = {We prove that the Hausdorff dimension of the set of badly approximable systems of $m$ linear forms in $n$ variables over the field of Laurent series with coefficients from a finite field is maximal. This is an analogue of Schmidt’s multi-dimensional generalisation of Jarník’s Theorem on badly approximable numbers.},
affiliation = {Department of Mathematical Sciences Faculty of Science University of Aarhus Ny Munkegade, Building 530 8000 Aarhus C, Denmark},
author = {Kristensen, Simon},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Laurent series; badly approximable systems; -games; Hausdorff dimension; Jarnik's theorem},
language = {eng},
number = {2},
pages = {421-444},
publisher = {Université Bordeaux 1},
title = {Badly approximable systems of linear forms over a field of formal series},
url = {http://eudml.org/doc/249662},
volume = {18},
year = {2006},
}

TY - JOUR
AU - Kristensen, Simon
TI - Badly approximable systems of linear forms over a field of formal series
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 2
SP - 421
EP - 444
AB - We prove that the Hausdorff dimension of the set of badly approximable systems of $m$ linear forms in $n$ variables over the field of Laurent series with coefficients from a finite field is maximal. This is an analogue of Schmidt’s multi-dimensional generalisation of Jarník’s Theorem on badly approximable numbers.
LA - eng
KW - Laurent series; badly approximable systems; -games; Hausdorff dimension; Jarnik's theorem
UR - http://eudml.org/doc/249662
ER -

References

top
  1. A. G. Abercrombie, Badly approximable p -adic integers. Proc. Indian Acad. Sci. Math. Sci. 105 (2) (1995), 123–134. Zbl0856.11035MR1350472
  2. M. Amou, A metrical result on transcendence measures in certain fields. J. Number Theory 59 (2) (1996), 389–397. Zbl0867.11055MR1402615
  3. J. W. S. Cassels, An introduction to the geometry of numbers. Springer-Verlag, Berlin, 1997. Zbl0866.11041MR1434478
  4. V. Jarník, Zur metrischen Theorie der diophantischen Approximationen. Prace Mat.–Fiz. (1928–1929), 91–106. 
  5. S. Kristensen, On the well-approximable matrices over a field of formal series. Math. Proc. Cambridge Philos. Soc. 135 (2) (2003), 255–268. Zbl1088.11056MR2006063
  6. S. Lang, Algebra (2nd Edition). Addison-Wesley Publishing Co., Reading, Mass., 1984. Zbl0712.00001MR783636
  7. K. Mahler, An analogue to Minkowski’s geometry of numbers in a field of series. Ann. of Math. (2) 42 (1941), 488–522. Zbl0027.16001MR4272
  8. H. Niederreiter, M. Vielhaber, Linear complexity profiles: Hausdorff dimensions for almost perfect profiles and measures for general profiles. J. Complexity 13 (3) (1997), 353–383. Zbl0934.94013MR1475570
  9. W. M. Schmidt, On badly approximable numbers and certain games. Trans. Amer. Math. Soc. 123 (1966), 178–199. Zbl0232.10029MR195595
  10. W. M. Schmidt, Badly approximable systems of linear forms, J. Number Theory 1 (1969), 139–154. Zbl0172.06401MR248090
  11. V. G. Sprindžuk, Mahler’s problem in metric number theory. American Mathematical Society, Providence, R.I., 1969. Zbl0181.05502MR245527

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.