# Local exact controllability to the trajectories of the Navier-Stokes system with nonlinear Navier-slip boundary conditions

ESAIM: Control, Optimisation and Calculus of Variations (2006)

- Volume: 12, Issue: 3, page 484-544
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topGuerrero, Sergio. "Local exact controllability to the trajectories of the Navier-Stokes system with nonlinear Navier-slip boundary conditions." ESAIM: Control, Optimisation and Calculus of Variations 12.3 (2006): 484-544. <http://eudml.org/doc/249676>.

@article{Guerrero2006,

abstract = {
In this paper we deal with the local exact controllability of the
Navier-Stokes system with nonlinear Navier-slip boundary
conditions and distributed controls supported in small sets. In a
first step, we prove a Carleman inequality for the linearized
Navier-Stokes system, which leads to null controllability of this
system at any time T>0. Then, fixed point arguments lead to the
deduction of a local result concerning the exact controllability
to the trajectories of the Navier-Stokes system.
},

author = {Guerrero, Sergio},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Navier-Stokes system; controllability; slip.; slip},

language = {eng},

month = {6},

number = {3},

pages = {484-544},

publisher = {EDP Sciences},

title = {Local exact controllability to the trajectories of the Navier-Stokes system with nonlinear Navier-slip boundary conditions},

url = {http://eudml.org/doc/249676},

volume = {12},

year = {2006},

}

TY - JOUR

AU - Guerrero, Sergio

TI - Local exact controllability to the trajectories of the Navier-Stokes system with nonlinear Navier-slip boundary conditions

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2006/6//

PB - EDP Sciences

VL - 12

IS - 3

SP - 484

EP - 544

AB -
In this paper we deal with the local exact controllability of the
Navier-Stokes system with nonlinear Navier-slip boundary
conditions and distributed controls supported in small sets. In a
first step, we prove a Carleman inequality for the linearized
Navier-Stokes system, which leads to null controllability of this
system at any time T>0. Then, fixed point arguments lead to the
deduction of a local result concerning the exact controllability
to the trajectories of the Navier-Stokes system.

LA - eng

KW - Navier-Stokes system; controllability; slip.; slip

UR - http://eudml.org/doc/249676

ER -

## References

top- R.A. Adams, Sobolev spaces. Pure and Applied Mathematics, Vol. 65. Academic Press, New York-London, 1975.
- J.-P. Aubin, L'analyse non linéaire et ses motivations économiques. Masson, Paris (1984).
- S. Anita and V. Barbu, Null controllability of nonlinear convective heat equations. ESAIM: COCV5 (2000) 157–173.
- J.A. Bello, Thesis, University of Seville (1993).
- T. Cebeci and A.M. Smith, Analysis of turbulent boundary layers. Applied Mathematics and Mechanics, No. 15. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London (1974).
- J.-M. Coron, On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions. ESAIM: COCV1 (1995/96) 35–75.
- C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation. Proc. Roy. Soc. Edinburgh125A (1995) 31–61.
- E. Fernández-Cara, S. Guerrero, O.Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl.83/12 (2004) 1501–1542.
- E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré, Analyse non Lin.17 (2000) 583–616.
- A. Fursikov and O.Yu. Imanuvilov, Controllability of Evolution Equations. Lecture Notes #34, Seoul National University, Korea (1996).
- G.P. Galdi, An introduction to the Mathematical Theory of the Navier-Stokes equations, Vol. I. Springer-Verlag, New York (1994).
- O.Yu. Imanuvilov, Local exact controllability for the 2-D Navier-Stokes equations with the Navier slip boundary conditions, in Turbulence Modelling and Vortex Dynamics, Istanbul, Springuer Berlin, 1996. Lect. Notes . Phys.491 (1997) 148–168
- O.Yu. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations. ESAIM: COCV6 (2001) 39–72.
- O.Yu. Imanuvilov and J.-P. Puel, Global Carleman estimates for weak elliptic non homogeneous Dirichlet problem. Int. Math. Research Notices16 (2003) 883–913.
- O.Yu. Imanuvilov and M. Yamamoto, Carleman estimate for a parabolic equation in a Sobolev space of negative order and its applications. Lect. Notes Pure Appl. Math.218 (2001)
- J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications (3 volumes). Dunod, Gauthiers-Villars, Paris (1968).
- P. Malliavin, Intégration et probabilités. Analyse de Fourier et analyse spectrale. Masson (1982).
- R.L. Panton, Incompressible flow. Wiley-Interscience, New York (1984).
- H. Schlichting, Boundary-Layer Theory. McGraw-Hill, New York (1968).
- V.A. Solonnikov and V.E. Schadilov, On a boundary value problem for a stationnary system of Navier-Stokes equations. Trudy Mat. Inst. Steklov125 (1973) 196–210.
- L. Tartar, An introduction to Sobolev spaces and interpolation spaces. Course (2000), URL: . URIhttp://www.math.cmu.edu/cna/publications/SOB+Int.pdf
- R. Temam, Navier-Stokes equations. Theory and numerical analysis. Studies in Mathematics and its applications, 2. North Holland Publishing Co., Amsterdam-New York-Oxford (1977).
- E. Zuazua, Exact boundary controllability for the semilinear wave equation, H. Brezis and J.L. Lions Eds., Pitman, New York in Nonlinear Partial Differential Equations Appl.X (1991) 357–391.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.