Large time behavior of solutions in super-critical cases to degenerate Keller-Segel systems

Stephan Luckhaus; Yoshie Sugiyama

ESAIM: Mathematical Modelling and Numerical Analysis (2006)

  • Volume: 40, Issue: 3, page 597-621
  • ISSN: 0764-583X

Abstract

top
We consider the following reaction-diffusion equation: ( KS ) u t = · u m - u q - 1 v , x N , 0 < t < , 0 = Δ v - v + u , x N , 0 < t < , u ( x , 0 ) = u 0 ( x ) , x N , where N 1 , m > 1 , q max { m + 2 N , 2 } .
In [Sugiyama, Nonlinear Anal.63 (2005) 1051–1062; Submitted; J. Differential Equations (in press)] it was shown that in the case of q max { m + 2 N , 2 } , the above problem (KS) is solvable globally in time for “small L N ( q - m ) 2 data”. Moreover, the decay of the solution (u,v) in L p ( N ) was proved. In this paper, we consider the case of “ q max { m + 2 N , 2 } and small L data” with any fixed N ( q - m ) 2 and show that (i) there exists a time global solution (u,v) of (KS) and it decays to 0 as t tends to ∞ and (ii) a solution u of the first equation in (KS) behaves like the Barenblatt solution asymptotically as t tends to ∞, where the Barenblatt solution is the exact solution (with self-similarity) of the porous medium equation u t = Δ u m with m>1.

How to cite

top

Luckhaus, Stephan, and Sugiyama, Yoshie. "Large time behavior of solutions in super-critical cases to degenerate Keller-Segel systems." ESAIM: Mathematical Modelling and Numerical Analysis 40.3 (2006): 597-621. <http://eudml.org/doc/249685>.

@article{Luckhaus2006,
abstract = { We consider the following reaction-diffusion equation:$$ \{\rm (KS)\} \left\\{ \begin\{array\}\{llll\} u\_t = \nabla \cdot \Big( \nabla u^m - u^\{q-1\} \nabla v \Big), & x \in \mathbb\{R\}^N, \ 0<t<\infty, \nonumber 0 = \Delta v - v + u, & x \in \mathbb\{R\}^N, \ 0<t<\infty, \nonumber u(x,0) = u\_0(x), & x \in \mathbb\{R\}^N, \end\{array\} \right. $$ where $N \ge 1, \ m > 1, \ q \ge \max\\{m+\frac\{2\}\{N\},2\\}$.
In [Sugiyama, Nonlinear Anal.63 (2005) 1051–1062; Submitted; J. Differential Equations (in press)] it was shown that in the case of $q \ge \max\\{m+\frac\{2\}\{N\},2\\}$, the above problem (KS) is solvable globally in time for “small $L^\{\frac\{N(q-m)\}\{2\}\}$ data”. Moreover, the decay of the solution (u,v) in $L^p(\mathbb\{R\}^N)$ was proved. In this paper, we consider the case of “$q \ge \max\\{m+\frac\{2\}\{N\},2\\}$ and small $L^\{\ell\}$ data” with any fixed $\ell \ge \frac\{N(q-m)\}\{2\}$ and show that (i) there exists a time global solution (u,v) of (KS) and it decays to 0 as t tends to ∞ and (ii) a solution u of the first equation in (KS) behaves like the Barenblatt solution asymptotically as t tends to ∞, where the Barenblatt solution is the exact solution (with self-similarity) of the porous medium equation $u_t = \Delta u^m$ with m>1. },
author = {Luckhaus, Stephan, Sugiyama, Yoshie},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Degenerate parabolic system; chemotaxis; Keller-Segel model; drift term; decay property; asymptotic behavior; Fujita exponent; porous medium equation; Barenblatt solution.; global existence; asymptotic behaviour; degenerate parabolic equation; self-similarity; parabolic-elliptic system},
language = {eng},
month = {7},
number = {3},
pages = {597-621},
publisher = {EDP Sciences},
title = {Large time behavior of solutions in super-critical cases to degenerate Keller-Segel systems},
url = {http://eudml.org/doc/249685},
volume = {40},
year = {2006},
}

TY - JOUR
AU - Luckhaus, Stephan
AU - Sugiyama, Yoshie
TI - Large time behavior of solutions in super-critical cases to degenerate Keller-Segel systems
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2006/7//
PB - EDP Sciences
VL - 40
IS - 3
SP - 597
EP - 621
AB - We consider the following reaction-diffusion equation:$$ {\rm (KS)} \left\{ \begin{array}{llll} u_t = \nabla \cdot \Big( \nabla u^m - u^{q-1} \nabla v \Big), & x \in \mathbb{R}^N, \ 0<t<\infty, \nonumber 0 = \Delta v - v + u, & x \in \mathbb{R}^N, \ 0<t<\infty, \nonumber u(x,0) = u_0(x), & x \in \mathbb{R}^N, \end{array} \right. $$ where $N \ge 1, \ m > 1, \ q \ge \max\{m+\frac{2}{N},2\}$.
In [Sugiyama, Nonlinear Anal.63 (2005) 1051–1062; Submitted; J. Differential Equations (in press)] it was shown that in the case of $q \ge \max\{m+\frac{2}{N},2\}$, the above problem (KS) is solvable globally in time for “small $L^{\frac{N(q-m)}{2}}$ data”. Moreover, the decay of the solution (u,v) in $L^p(\mathbb{R}^N)$ was proved. In this paper, we consider the case of “$q \ge \max\{m+\frac{2}{N},2\}$ and small $L^{\ell}$ data” with any fixed $\ell \ge \frac{N(q-m)}{2}$ and show that (i) there exists a time global solution (u,v) of (KS) and it decays to 0 as t tends to ∞ and (ii) a solution u of the first equation in (KS) behaves like the Barenblatt solution asymptotically as t tends to ∞, where the Barenblatt solution is the exact solution (with self-similarity) of the porous medium equation $u_t = \Delta u^m$ with m>1.
LA - eng
KW - Degenerate parabolic system; chemotaxis; Keller-Segel model; drift term; decay property; asymptotic behavior; Fujita exponent; porous medium equation; Barenblatt solution.; global existence; asymptotic behaviour; degenerate parabolic equation; self-similarity; parabolic-elliptic system
UR - http://eudml.org/doc/249685
ER -

References

top
  1. N.D. Alikakos, Lp bounds of solutions of reaction-diffusion equations. Comm. Partial Diff. Equ.4 (1979) 827–868.  Zbl0421.35009
  2. G.I. Barenblatt, On some unsteady motions of a fluid and a gas in a porous medium. Prikl. Mat. Mekh.16 (1952) 67–78.  Zbl0049.41902
  3. P.H. Bénilan, Opérateurs accrétifs et semi-groupes dans les espaces Lp (1 ≤ p ≤ ∞). France-Japan Seminar, Tokyo (1976).  
  4. P. Biler, T. Nadzieja and R. Stanczy, Nonisothermal systems of self-attracting Fermi-Dirac particles. Banach Center Pulb.66 (2004) 61–78.  Zbl1146.35415
  5. P. Biler, M. Cannone, I.A. Guerra and G. Karch, Global regular and singular solutions for a model of gravitating particles. Math. Ann.330 (2004) 693–708.  Zbl1078.35097
  6. H. Brezis, Analyse fonctionnelle, Theorie et applications. Masson (1983).  Zbl0511.46001
  7. S. Childress and J.K. Percus, Nonlinear aspects of chemotaxis. Math. Biosci.56 (1981) 217–237.  Zbl0481.92010
  8. J.I. Diaz, T. Nagai and J.M. Rakotoson, Symmetrization techniques on unbounded domains: Application to a chemotaxis system on N . J. Diffierential Equations145 (1998) 156–183.  Zbl0908.35016
  9. J. Duoandikoetxea, Fourier Analysis, Graduate studies Mathematics29 AMS, Providence, Rhode Island (2000).  Zbl0969.42001
  10. A. Friedman and S. Kamin, The asymptotic behavior of gas in an N-dimensional porous medium. Trans. Amer. Math. Soc.262 (1980) 551–563.  Zbl0447.76076
  11. H. Fujita, On the blowing up of solutions of the Cauchy problem for u t = Δ u + u 1 + α . J. Fac. Sci. Univ. Tokyo Sect. I13 (1966) 109–124.  Zbl0163.34002
  12. V.A. Galaktionov, Blow-up for quasilinear heat equations with critical Fujita's exponents. Proc. Roy. Soc. Edinburgh Sect. A124 (1994) 517–525.  Zbl0808.35053
  13. V.A. Galaktionov and S.P. Kurdyumov, A.P. Mikhailov and A.A. Samarskiin, On unbounded solutions of the Cauchy problem for a parabolic equation u t = · ( u σ u ) + u β . Sov. Phys., Dokl.25 (1980) 458–459.  
  14. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin-New York (1983).  Zbl0562.35001
  15. M.A. Herrero and Juan J.L. Velázquez, Chemotactic collapse for the Keller-Segel model. J. Math. Biol.35 (1996) 177–194.  Zbl0866.92009
  16. M.A. Herrero and Juan J.L. Velázquez, Singularity patterns in a chemotaxis model. Math. Ann.306 (1996) 583–623.  Zbl0864.35008
  17. D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math.-Verein.105 (2003) 103–165.  Zbl1071.35001
  18. D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II. Jahresber. Deutsch. Math.-Verein.106 (2004) 51–69.  Zbl1072.35007
  19. W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc.329 (1992) 819–824.  Zbl0746.35002
  20. S. Kamin, Similar solutions and the asymptotics of filtration equations. Arch. Rational Mech. Anal.60 (1976) 171–183.  Zbl0336.76036
  21. S. Kamin and J.L. Vazquez, Fundamental solutions and asymptotic behaviour for the p-Laplacian equation. Rev. Mat. Iberoamericana4 (1988) 339–354.  Zbl0699.35158
  22. T. Kawanago, Existence and behavior of solutions for ut = Δ(um) + u l. Adv. Math. Sci. Appl.7 (1997) 367–400.  Zbl0876.35061
  23. E.F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol.26 (1970) 399–415.  Zbl1170.92306
  24. K. Mochizuki and R. Suzuki, Critical exponent and critical blow-up for quasilinear parabolic equations. Israel J. Math.98 (1997) 141–156.  Zbl0880.35057
  25. T. Nagai, T. Senba and K. Yoshida, Application of the Moser-Trudinger inequality to a parabolic system of chemotaxis. Funkc. Ekvacioj40 (1997) 411–433.  Zbl0901.35104
  26. T. Nagai, R. Syukuinn and M. Umesako, Decay Properties and Asymptotic Profiles of Bounded Solutions to a Parabolic System of Chemotaxis in N . Funkc. Ekvacioj46 (2003) 383–407.  Zbl1330.35476
  27. M. Nakao, Global solutions for some nonlinear parabolic equations with nonmonotonic perturbations. Nonlinear Analysis, Theory, Method Appl.10 (1986) 299–314.  Zbl0595.35058
  28. T. Senba and T. Suzuki, Local and norm behavior of blowup solutions to a parabolic system of chemotaxis. J. Korean Math. Soc.37 (2000) 929–941.  Zbl0967.35011
  29. E.M. Stein, Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. (1970).  Zbl0207.13501
  30. Y. Sugiyama, Global existence and decay properties of solutions for some degenerate quasilinear parabolic systems modelling chemotaxis. Nonlinear Anal.63 (2005) 1051–1062.  Zbl1224.35207
  31. Y. Sugiyama, Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems for chemotaxis-growth models, (submitted).  Zbl1212.35241
  32. Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term. J. Differential Equations (in press).  Zbl1102.35046
  33. Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems. Diff. Integral Equations, (to appear).  Zbl1212.35240
  34. J.L. Vazquez, Asymptotic behaviour for the porous medium equation posed in the whole space. J. Evol. Equ.3 (2003) 67–118.  Zbl1036.35108
  35. L. Véron, Coercivité et propriétés régularisantes des semi-groupes nonlinéaires dans les espaces de Banach. Ann. Fac. Sci. Toulouse1 (1979) 171–200.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.