Large time behavior of solutions in super-critical cases to degenerate Keller-Segel systems
Stephan Luckhaus; Yoshie Sugiyama
ESAIM: Mathematical Modelling and Numerical Analysis (2006)
- Volume: 40, Issue: 3, page 597-621
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topLuckhaus, Stephan, and Sugiyama, Yoshie. "Large time behavior of solutions in super-critical cases to degenerate Keller-Segel systems." ESAIM: Mathematical Modelling and Numerical Analysis 40.3 (2006): 597-621. <http://eudml.org/doc/249685>.
@article{Luckhaus2006,
abstract = {
We consider the following reaction-diffusion equation:$$
\{\rm (KS)\}
\left\\{
\begin\{array\}\{llll\}
u\_t =
\nabla \cdot \Big( \nabla u^m - u^\{q-1\} \nabla v \Big),
& x \in \mathbb\{R\}^N, \ 0<t<\infty, \nonumber
0 =
\Delta v - v + u,
& x \in \mathbb\{R\}^N, \ 0<t<\infty, \nonumber
u(x,0) = u\_0(x),
& x \in \mathbb\{R\}^N,
\end\{array\}
\right.
$$
where $N \ge 1, \ m > 1, \ q \ge \max\\{m+\frac\{2\}\{N\},2\\}$.
In [Sugiyama, Nonlinear Anal.63 (2005) 1051–1062; Submitted; J. Differential Equations (in press)]
it was shown that
in the case of $q \ge \max\\{m+\frac\{2\}\{N\},2\\}$,
the above problem (KS) is solvable globally in time for “small $L^\{\frac\{N(q-m)\}\{2\}\}$ data”.
Moreover,
the decay of the solution (u,v) in $L^p(\mathbb\{R\}^N)$
was proved.
In this paper, we consider
the case of “$q \ge \max\\{m+\frac\{2\}\{N\},2\\}$ and
small $L^\{\ell\}$ data” with any fixed $\ell \ge \frac\{N(q-m)\}\{2\}$
and show that
(i)
there exists a time global solution (u,v) of (KS) and
it decays to 0 as t tends to ∞ and
(ii)
a solution u of the first equation in (KS)
behaves
like the Barenblatt solution asymptotically as t tends to ∞,
where the Barenblatt solution is the exact solution (with self-similarity)
of the porous medium equation
$u_t = \Delta u^m$ with m>1.
},
author = {Luckhaus, Stephan, Sugiyama, Yoshie},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Degenerate parabolic system;
chemotaxis; Keller-Segel model; drift term;
decay property; asymptotic behavior; Fujita exponent;
porous medium equation; Barenblatt solution.; global existence; asymptotic behaviour; degenerate parabolic equation; self-similarity; parabolic-elliptic system},
language = {eng},
month = {7},
number = {3},
pages = {597-621},
publisher = {EDP Sciences},
title = {Large time behavior of solutions in super-critical cases to degenerate Keller-Segel systems},
url = {http://eudml.org/doc/249685},
volume = {40},
year = {2006},
}
TY - JOUR
AU - Luckhaus, Stephan
AU - Sugiyama, Yoshie
TI - Large time behavior of solutions in super-critical cases to degenerate Keller-Segel systems
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2006/7//
PB - EDP Sciences
VL - 40
IS - 3
SP - 597
EP - 621
AB -
We consider the following reaction-diffusion equation:$$
{\rm (KS)}
\left\{
\begin{array}{llll}
u_t =
\nabla \cdot \Big( \nabla u^m - u^{q-1} \nabla v \Big),
& x \in \mathbb{R}^N, \ 0<t<\infty, \nonumber
0 =
\Delta v - v + u,
& x \in \mathbb{R}^N, \ 0<t<\infty, \nonumber
u(x,0) = u_0(x),
& x \in \mathbb{R}^N,
\end{array}
\right.
$$
where $N \ge 1, \ m > 1, \ q \ge \max\{m+\frac{2}{N},2\}$.
In [Sugiyama, Nonlinear Anal.63 (2005) 1051–1062; Submitted; J. Differential Equations (in press)]
it was shown that
in the case of $q \ge \max\{m+\frac{2}{N},2\}$,
the above problem (KS) is solvable globally in time for “small $L^{\frac{N(q-m)}{2}}$ data”.
Moreover,
the decay of the solution (u,v) in $L^p(\mathbb{R}^N)$
was proved.
In this paper, we consider
the case of “$q \ge \max\{m+\frac{2}{N},2\}$ and
small $L^{\ell}$ data” with any fixed $\ell \ge \frac{N(q-m)}{2}$
and show that
(i)
there exists a time global solution (u,v) of (KS) and
it decays to 0 as t tends to ∞ and
(ii)
a solution u of the first equation in (KS)
behaves
like the Barenblatt solution asymptotically as t tends to ∞,
where the Barenblatt solution is the exact solution (with self-similarity)
of the porous medium equation
$u_t = \Delta u^m$ with m>1.
LA - eng
KW - Degenerate parabolic system;
chemotaxis; Keller-Segel model; drift term;
decay property; asymptotic behavior; Fujita exponent;
porous medium equation; Barenblatt solution.; global existence; asymptotic behaviour; degenerate parabolic equation; self-similarity; parabolic-elliptic system
UR - http://eudml.org/doc/249685
ER -
References
top- N.D. Alikakos, Lp bounds of solutions of reaction-diffusion equations. Comm. Partial Diff. Equ.4 (1979) 827–868.
- G.I. Barenblatt, On some unsteady motions of a fluid and a gas in a porous medium. Prikl. Mat. Mekh.16 (1952) 67–78.
- P.H. Bénilan, Opérateurs accrétifs et semi-groupes dans les espaces Lp (1 ≤ p ≤ ∞). France-Japan Seminar, Tokyo (1976).
- P. Biler, T. Nadzieja and R. Stanczy, Nonisothermal systems of self-attracting Fermi-Dirac particles. Banach Center Pulb.66 (2004) 61–78.
- P. Biler, M. Cannone, I.A. Guerra and G. Karch, Global regular and singular solutions for a model of gravitating particles. Math. Ann.330 (2004) 693–708.
- H. Brezis, Analyse fonctionnelle, Theorie et applications. Masson (1983).
- S. Childress and J.K. Percus, Nonlinear aspects of chemotaxis. Math. Biosci.56 (1981) 217–237.
- J.I. Diaz, T. Nagai and J.M. Rakotoson, Symmetrization techniques on unbounded domains: Application to a chemotaxis system on . J. Diffierential Equations145 (1998) 156–183.
- J. Duoandikoetxea, Fourier Analysis, Graduate studies Mathematics29 AMS, Providence, Rhode Island (2000).
- A. Friedman and S. Kamin, The asymptotic behavior of gas in an N-dimensional porous medium. Trans. Amer. Math. Soc.262 (1980) 551–563.
- H. Fujita, On the blowing up of solutions of the Cauchy problem for . J. Fac. Sci. Univ. Tokyo Sect. I13 (1966) 109–124.
- V.A. Galaktionov, Blow-up for quasilinear heat equations with critical Fujita's exponents. Proc. Roy. Soc. Edinburgh Sect. A124 (1994) 517–525.
- V.A. Galaktionov and S.P. Kurdyumov, A.P. Mikhailov and A.A. Samarskiin, On unbounded solutions of the Cauchy problem for a parabolic equation . Sov. Phys., Dokl.25 (1980) 458–459.
- D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin-New York (1983).
- M.A. Herrero and Juan J.L. Velázquez, Chemotactic collapse for the Keller-Segel model. J. Math. Biol.35 (1996) 177–194.
- M.A. Herrero and Juan J.L. Velázquez, Singularity patterns in a chemotaxis model. Math. Ann.306 (1996) 583–623.
- D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math.-Verein.105 (2003) 103–165.
- D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II. Jahresber. Deutsch. Math.-Verein.106 (2004) 51–69.
- W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc.329 (1992) 819–824.
- S. Kamin, Similar solutions and the asymptotics of filtration equations. Arch. Rational Mech. Anal.60 (1976) 171–183.
- S. Kamin and J.L. Vazquez, Fundamental solutions and asymptotic behaviour for the p-Laplacian equation. Rev. Mat. Iberoamericana4 (1988) 339–354.
- T. Kawanago, Existence and behavior of solutions for ut = Δ(um) + u l. Adv. Math. Sci. Appl.7 (1997) 367–400.
- E.F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol.26 (1970) 399–415.
- K. Mochizuki and R. Suzuki, Critical exponent and critical blow-up for quasilinear parabolic equations. Israel J. Math.98 (1997) 141–156.
- T. Nagai, T. Senba and K. Yoshida, Application of the Moser-Trudinger inequality to a parabolic system of chemotaxis. Funkc. Ekvacioj40 (1997) 411–433.
- T. Nagai, R. Syukuinn and M. Umesako, Decay Properties and Asymptotic Profiles of Bounded Solutions to a Parabolic System of Chemotaxis in . Funkc. Ekvacioj46 (2003) 383–407.
- M. Nakao, Global solutions for some nonlinear parabolic equations with nonmonotonic perturbations. Nonlinear Analysis, Theory, Method Appl.10 (1986) 299–314.
- T. Senba and T. Suzuki, Local and norm behavior of blowup solutions to a parabolic system of chemotaxis. J. Korean Math. Soc.37 (2000) 929–941.
- E.M. Stein, Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. (1970).
- Y. Sugiyama, Global existence and decay properties of solutions for some degenerate quasilinear parabolic systems modelling chemotaxis. Nonlinear Anal.63 (2005) 1051–1062.
- Y. Sugiyama, Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems for chemotaxis-growth models, (submitted).
- Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term. J. Differential Equations (in press).
- Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems. Diff. Integral Equations, (to appear).
- J.L. Vazquez, Asymptotic behaviour for the porous medium equation posed in the whole space. J. Evol. Equ.3 (2003) 67–118.
- L. Véron, Coercivité et propriétés régularisantes des semi-groupes nonlinéaires dans les espaces de Banach. Ann. Fac. Sci. Toulouse1 (1979) 171–200.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.