Finite volume methods for the valuation of American options
ESAIM: Mathematical Modelling and Numerical Analysis (2006)
- Volume: 40, Issue: 2, page 311-330
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBerton, Julien, and Eymard, Robert. "Finite volume methods for the valuation of American options." ESAIM: Mathematical Modelling and Numerical Analysis 40.2 (2006): 311-330. <http://eudml.org/doc/249698>.
@article{Berton2006,
abstract = {
We consider the use of finite volume methods for the approximation of a
parabolic variational inequality arising in financial mathematics.
We show, under some regularity
conditions, the convergence of the upwind implicit finite volume scheme
to a weak solution of the variational inequality in a bounded domain.
Some results, obtained in comparison with other methods
on two dimensional cases, show that finite volume schemes can be
accurate and efficient.
},
author = {Berton, Julien, Eymard, Robert},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {American option; variational inequality; finite volume method;
convergence of numerical scheme.; convergence of numerical scheme},
language = {eng},
month = {6},
number = {2},
pages = {311-330},
publisher = {EDP Sciences},
title = {Finite volume methods for the valuation of American options},
url = {http://eudml.org/doc/249698},
volume = {40},
year = {2006},
}
TY - JOUR
AU - Berton, Julien
AU - Eymard, Robert
TI - Finite volume methods for the valuation of American options
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2006/6//
PB - EDP Sciences
VL - 40
IS - 2
SP - 311
EP - 330
AB -
We consider the use of finite volume methods for the approximation of a
parabolic variational inequality arising in financial mathematics.
We show, under some regularity
conditions, the convergence of the upwind implicit finite volume scheme
to a weak solution of the variational inequality in a bounded domain.
Some results, obtained in comparison with other methods
on two dimensional cases, show that finite volume schemes can be
accurate and efficient.
LA - eng
KW - American option; variational inequality; finite volume method;
convergence of numerical scheme.; convergence of numerical scheme
UR - http://eudml.org/doc/249698
ER -
References
top- K. Amin and A. Khanna, Convergence of American option values from discrete- to continuous-time financial models. Math. Finance4 (1994) 289–304.
- V. Bally and G. Pages, A quantization algorithm for solving multi-dimensional discrete-time optimal stopping problems. Bernoulli9 (2003) 1003–1049.
- G. Barles, Ch. Daher and M. Romano, Convergence of numerical Schemes for problems arising in Finance theory. Math. Mod. Meth. Appl. Sci.5 (1995) 125–143.
- J. Bénard, R. Eymard, X. Nicolas and C. Chavant, Boiling in porous media: model and simulations. Transport Porous Med.60 (2005) 1–31.
- A. Bensoussan and J.L. Lions, Applications des inéquations variationnelles en contrôle stochastique, Dunod, Paris (1978). Application of variational inequalities in stochastic control, North Holland (1982).
- J. Berton and R. Eymard, Une méthode de volumes finis pour le calcul des options américaines, Congrès d'Analyse Numérique. La Grande Motte, France (2003). URIhttp://www.math.univ-montp2.fr/canum03/
- J. Berton, Méthodes de volumes finis pour des problèmes de mathématiques financières. Thèse de l'Université de Marne-la-Vallée, France (in preparation).
- P. Boyle, J. Evnine and S. Gibbs, Numerical evaluation of multivariate contingent claims. Rev. Financ. Stud.2 (1989) 241–250.
- M.J. Brennan and E. Schwartz, The valuation of the American put option. J. Financ.32 (1977) 449–462.
- H. Brézis, Analyse fonctionnelle (Théorie et applications). Dunod, Paris (1999).
- M. Broadie and J. Detemple, American option valuation: new bounds, approximations, and a comparison of existing methods securities using simulation. Rev. Financ. Stud.9 (1996) 1221–1250.
- P. Carr, R. Jarrow and R. Myneni, Alternative characterizations of American put options. Math. Financ.2 (1992) 87–106.
- J.C. Cox, S.A. Ross and M. Rubinstein, Options pricing: A simplified approach. J. Financ. Econ.7 (1979) 229–263.
- J.N. Dewynne, S.D. Howison, I. Rupf and P. Wilmott, Some mathematical results in the pricing of American options, Eur. J. Appl. Math.4 (1993) 381–398.
- R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods, in Handb. Numer. Anal., Ph. Ciarlet and J.L. Lions (Eds.) 7 (2000) 715–1022.
- R. Eymard, T. Gallouët and R. Herbin, Convergence of finite volume schemes for semilinear convection diffusion equations, Numer. Math.82 (1999) 90–116.
- R. Eymard, T. Gallouët, R. Herbin and A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations, Numer. Math.92 (2001) 41–82.
- P.W. Hemker, Sparse-grid finite-volume multigrid for 3D-problems. Adv. Comput. Math4 (1995) 83–110.
- P. Jaillet, D. Lamberton and B. Lapeyre, Variational inequalities and the pricing of American options. Acta Appl. Math.21 3 (1990) 263–289.
- B. Kamrad and P. Ritchken, Multinomial approximating models for options with k-state variables. Manage. Sci.37 (1991) 1640–1652.
- O.A. Ladyzhenskaya, V.A. Solonnikov and N.N. Ural'tseva, Linear and quasi-linear equations of parabolic type. Translated from the Russian by S. Smith. Transl. Math. Monogr. (AMS) 23 (1968) xi+648.
- D. Lamberton and B. Lapeyre, Introduction au calcul stochastique appliqué à la finance. Ellipses, Paris, New York, London (1997) 176.
- Y. Saad, Iterative methods for sparse linear systems. First edition, SIAM (1996).
- I. Sapariuc, M.D. Marcozzi and J.E. Flaherty, A numerical analysis of variational valuation techniques for derivative securities, Appl. Math. Comput.159 (2004) 171–198.
- S. Villeneuve and A. Zanette, Parabolic A.D.I. methods for pricing American options on two stocks, Math. Oper. Res.27 (2002) 121–149.
- R. Zvan, P.A. Forsyth and K.R. Vetzal, A finite volume approach for contingent claims valuation, IMA J. Numer. Anal.21 (2001) 703–731.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.