New unilateral problems in stratigraphy
Stanislav N. Antontsev; Gérard Gagneux; Robert Luce; Guy Vallet
ESAIM: Mathematical Modelling and Numerical Analysis (2006)
- Volume: 40, Issue: 4, page 765-784
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topAntontsev, Stanislav N., et al. "New unilateral problems in stratigraphy." ESAIM: Mathematical Modelling and Numerical Analysis 40.4 (2006): 765-784. <http://eudml.org/doc/249709>.
@article{Antontsev2006,
abstract = {
This work deals with the study of some stratigraphic models for the formation of geological basins under a maximal erosion rate constrain. It leads to introduce differential
inclusions of degenerated hyperbolic-parabolic type $0\in \partial _\{t\}u-div\\{H(\partial _\{t\}u+E)\nabla u\\}$, where H is the maximal monotonous graph of the Heaviside function and E is a given non-negative function. Firstly, we present the new and realistic models and an original mathematical formulation, taking into account the weather-limited rate constraint in the conservation law, with a unilateral constraint on the outflow boundary.
Then, we give a study of the 1-D case with numerical illustrations.
},
author = {Antontsev, Stanislav N., Gagneux, Gérard, Luce, Robert, Vallet, Guy},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Stratigraphic models; weather limited; degenerated parabolic-hyperbolic conservation laws.; stratigraphic models; degenerated parabolic-hyperbolic conservation laws},
language = {eng},
month = {11},
number = {4},
pages = {765-784},
publisher = {EDP Sciences},
title = {New unilateral problems in stratigraphy},
url = {http://eudml.org/doc/249709},
volume = {40},
year = {2006},
}
TY - JOUR
AU - Antontsev, Stanislav N.
AU - Gagneux, Gérard
AU - Luce, Robert
AU - Vallet, Guy
TI - New unilateral problems in stratigraphy
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2006/11//
PB - EDP Sciences
VL - 40
IS - 4
SP - 765
EP - 784
AB -
This work deals with the study of some stratigraphic models for the formation of geological basins under a maximal erosion rate constrain. It leads to introduce differential
inclusions of degenerated hyperbolic-parabolic type $0\in \partial _{t}u-div\{H(\partial _{t}u+E)\nabla u\}$, where H is the maximal monotonous graph of the Heaviside function and E is a given non-negative function. Firstly, we present the new and realistic models and an original mathematical formulation, taking into account the weather-limited rate constraint in the conservation law, with a unilateral constraint on the outflow boundary.
Then, we give a study of the 1-D case with numerical illustrations.
LA - eng
KW - Stratigraphic models; weather limited; degenerated parabolic-hyperbolic conservation laws.; stratigraphic models; degenerated parabolic-hyperbolic conservation laws
UR - http://eudml.org/doc/249709
ER -
References
top- S.N. Antontsev, D. Etienne, G. Gagneux and G. Vallet, New unilateral problems in stratigraphy. Publication interne du Laboratoire de Mathématiques Appliquées, UMR-CNRS 5142, Université de Pau, No. 05/13 (2005).
- S.N. Antontsev, G. Gagneux, R. Luce and G. Vallet, Weather limited constraint in stratigraphy. International conference “Tikhonov and Contemporary Mathematics": section 5, Mathematical Geophysics, Moscow (2006) 7–8.
- S.N. Antontsev, G. Gagneux and G. Vallet, Analyse mathématique d'un modèle d'asservissement stratigraphique. Approche gravitationnelle d'un processus de sédimentation sous contrainte d'érosion maximale. Publication interne du Laboratoire de Mathématiques Appliquées, UMR-CNRS 5142, Université de Pau, No. 01/23 (2001).
- S.N. Antontsev, G. Gagneux and G. Vallet, On some stratigraphic control problems, Prikladnaya Mekhanika Tekhnicheskaja Fisika (Novosibirsk)44 (2003) 85–94 (in Russian), and Journal of Applied Mechanics and Technical Physics (New York)44 (2003) 821–828.
- P. Bénilan, M.G. Crandall and A. Pazy, Bonnes solutions d'un problème d'évolution semi-linéaire. C. R. Acad. Sci. Paris Sér. I Math.(306) (1988) 527–530.
- C. Cuesta, C.J. van Duijn and J. Hulshof, Infiltration in porous media with dynamic capillary pressure: Travelling waves. Eur. J. Appl. Math.11 (2000) 381–397.
- D. Etienne, Contribution à l'analyse mathématique de modèles stratigraphiques. Thèse de l'Université de Pau, France (2004).
- R. Eymard and T. Gallouët, Analytical and numerical study of a model of erosion and sedimentation. SIAM J. Numer. Anal.43 (2006) 2344–2370.
- R. Eymard, T. Gallouët, D. Granjeon, R. Masson and Q.H. Tran, Multi-lithology stratigraphic model under maximum erosion rate constraint. Internat. J. Numer. Methods Engrg.60 (2004) 527–548.
- G. Gagneux, R. Luce and G. Vallet, A non-standard free-boundary problem arising from stratigraphy. Publication interne du Laboratoire de Mathématiques Appliquées, UMR-CNRS 5142, Université de Pau, No. 04/33 (2004).
- G. Gagneux and M. Madaune-Tort, Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière. Mathématiques & Applications, Vol. 22 Springer, Paris (1996).
- G. Gagneux and G. Vallet, Sur des problèmes d'asservissements stratigraphiques. ESAIM: COCV “A tribute to Jacques-Louis Lions” 8 (2002) 715–739.
- G. Gagneux and G. Vallet, A result of existence for an original convection-diffusion equation. Revista de la Real Academia de Ciencias, Serie A: Matemáticas (RACSAM)99 (2005) 125–131.
- T. Gallouët, Equations satisfaites par des limites de solutions approchées, conférence plénière, 34ème congrès d'analyse numérique, Anglet (Pyrénées Atlantiques), in Canum (2002) 87–96.
- V. Gervais and R. Masson, Mathematical and numerical analysis of a stratigraphic model. ESAIM: M2AN38 (2004) 585-611.
- J.-L. Lions, Cours d'Analyse Numérique. Hermann, École Polytechnique, Paris (1973).
- J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969).
- G. Vallet, Sur une loi de conservation issue de la géologie. C. R. Acad. Sci. Paris Sér. I Math.(337) (2003) 559–564.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.