New unilateral problems in stratigraphy

Stanislav N. Antontsev; Gérard Gagneux; Robert Luce; Guy Vallet

ESAIM: Mathematical Modelling and Numerical Analysis (2006)

  • Volume: 40, Issue: 4, page 765-784
  • ISSN: 0764-583X

Abstract

top
This work deals with the study of some stratigraphic models for the formation of geological basins under a maximal erosion rate constrain. It leads to introduce differential inclusions of degenerated hyperbolic-parabolic type 0 t u - d i v { H ( t u + E ) u } , where H is the maximal monotonous graph of the Heaviside function and E is a given non-negative function. Firstly, we present the new and realistic models and an original mathematical formulation, taking into account the weather-limited rate constraint in the conservation law, with a unilateral constraint on the outflow boundary. Then, we give a study of the 1-D case with numerical illustrations.

How to cite

top

Antontsev, Stanislav N., et al. "New unilateral problems in stratigraphy." ESAIM: Mathematical Modelling and Numerical Analysis 40.4 (2006): 765-784. <http://eudml.org/doc/249709>.

@article{Antontsev2006,
abstract = { This work deals with the study of some stratigraphic models for the formation of geological basins under a maximal erosion rate constrain. It leads to introduce differential inclusions of degenerated hyperbolic-parabolic type $0\in \partial _\{t\}u-div\\{H(\partial _\{t\}u+E)\nabla u\\}$, where H is the maximal monotonous graph of the Heaviside function and E is a given non-negative function. Firstly, we present the new and realistic models and an original mathematical formulation, taking into account the weather-limited rate constraint in the conservation law, with a unilateral constraint on the outflow boundary. Then, we give a study of the 1-D case with numerical illustrations. },
author = {Antontsev, Stanislav N., Gagneux, Gérard, Luce, Robert, Vallet, Guy},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Stratigraphic models; weather limited; degenerated parabolic-hyperbolic conservation laws.; stratigraphic models; degenerated parabolic-hyperbolic conservation laws},
language = {eng},
month = {11},
number = {4},
pages = {765-784},
publisher = {EDP Sciences},
title = {New unilateral problems in stratigraphy},
url = {http://eudml.org/doc/249709},
volume = {40},
year = {2006},
}

TY - JOUR
AU - Antontsev, Stanislav N.
AU - Gagneux, Gérard
AU - Luce, Robert
AU - Vallet, Guy
TI - New unilateral problems in stratigraphy
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2006/11//
PB - EDP Sciences
VL - 40
IS - 4
SP - 765
EP - 784
AB - This work deals with the study of some stratigraphic models for the formation of geological basins under a maximal erosion rate constrain. It leads to introduce differential inclusions of degenerated hyperbolic-parabolic type $0\in \partial _{t}u-div\{H(\partial _{t}u+E)\nabla u\}$, where H is the maximal monotonous graph of the Heaviside function and E is a given non-negative function. Firstly, we present the new and realistic models and an original mathematical formulation, taking into account the weather-limited rate constraint in the conservation law, with a unilateral constraint on the outflow boundary. Then, we give a study of the 1-D case with numerical illustrations.
LA - eng
KW - Stratigraphic models; weather limited; degenerated parabolic-hyperbolic conservation laws.; stratigraphic models; degenerated parabolic-hyperbolic conservation laws
UR - http://eudml.org/doc/249709
ER -

References

top
  1. S.N. Antontsev, D. Etienne, G. Gagneux and G. Vallet, New unilateral problems in stratigraphy. Publication interne du Laboratoire de Mathématiques Appliquées, UMR-CNRS 5142, Université de Pau, No. 05/13 (2005).  
  2. S.N. Antontsev, G. Gagneux, R. Luce and G. Vallet, Weather limited constraint in stratigraphy. International conference “Tikhonov and Contemporary Mathematics": section 5, Mathematical Geophysics, Moscow (2006) 7–8.  
  3. S.N. Antontsev, G. Gagneux and G. Vallet, Analyse mathématique d'un modèle d'asservissement stratigraphique. Approche gravitationnelle d'un processus de sédimentation sous contrainte d'érosion maximale. Publication interne du Laboratoire de Mathématiques Appliquées, UMR-CNRS 5142, Université de Pau, No. 01/23 (2001).  
  4. S.N. Antontsev, G. Gagneux and G. Vallet, On some stratigraphic control problems, Prikladnaya Mekhanika Tekhnicheskaja Fisika (Novosibirsk)44 (2003) 85–94 (in Russian), and Journal of Applied Mechanics and Technical Physics (New York)44 (2003) 821–828.  
  5. P. Bénilan, M.G. Crandall and A. Pazy, Bonnes solutions d'un problème d'évolution semi-linéaire. C. R. Acad. Sci. Paris Sér. I Math.(306) (1988) 527–530.  
  6. C. Cuesta, C.J. van Duijn and J. Hulshof, Infiltration in porous media with dynamic capillary pressure: Travelling waves. Eur. J. Appl. Math.11 (2000) 381–397.  
  7. D. Etienne, Contribution à l'analyse mathématique de modèles stratigraphiques. Thèse de l'Université de Pau, France (2004).  
  8. R. Eymard and T. Gallouët, Analytical and numerical study of a model of erosion and sedimentation. SIAM J. Numer. Anal.43 (2006) 2344–2370.  
  9. R. Eymard, T. Gallouët, D. Granjeon, R. Masson and Q.H. Tran, Multi-lithology stratigraphic model under maximum erosion rate constraint. Internat. J. Numer. Methods Engrg.60 (2004) 527–548.  
  10. G. Gagneux, R. Luce and G. Vallet, A non-standard free-boundary problem arising from stratigraphy. Publication interne du Laboratoire de Mathématiques Appliquées, UMR-CNRS 5142, Université de Pau, No. 04/33 (2004).  
  11. G. Gagneux and M. Madaune-Tort, Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière. Mathématiques & Applications, Vol. 22 Springer, Paris (1996).  
  12. G. Gagneux and G. Vallet, Sur des problèmes d'asservissements stratigraphiques. ESAIM: COCV “A tribute to Jacques-Louis Lions” 8 (2002) 715–739.  
  13. G. Gagneux and G. Vallet, A result of existence for an original convection-diffusion equation. Revista de la Real Academia de Ciencias, Serie A: Matemáticas (RACSAM)99 (2005) 125–131.  
  14. T. Gallouët, Equations satisfaites par des limites de solutions approchées, conférence plénière, 34ème congrès d'analyse numérique, Anglet (Pyrénées Atlantiques), in Canum (2002) 87–96.  
  15. V. Gervais and R. Masson, Mathematical and numerical analysis of a stratigraphic model. ESAIM: M2AN38 (2004) 585-611.  
  16. J.-L. Lions, Cours d'Analyse Numérique. Hermann, École Polytechnique, Paris (1973).  
  17. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969).  
  18. G. Vallet, Sur une loi de conservation issue de la géologie. C. R. Acad. Sci. Paris Sér. I Math.(337) (2003) 559–564.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.