Asymptotic analysis of an approximate model for time harmonic waves in media with thin slots

Patrick Joly; Sébastien Tordeux

ESAIM: Mathematical Modelling and Numerical Analysis (2006)

  • Volume: 40, Issue: 1, page 63-97
  • ISSN: 0764-583X

Abstract

top
In this article, we derive a complete mathematical analysis of a coupled 1D-2D model for 2D wave propagation in media including thin slots. Our error estimates are illustrated by numerical results.

How to cite

top

Joly, Patrick, and Tordeux, Sébastien. "Asymptotic analysis of an approximate model for time harmonic waves in media with thin slots." ESAIM: Mathematical Modelling and Numerical Analysis 40.1 (2006): 63-97. <http://eudml.org/doc/249715>.

@article{Joly2006,
abstract = { In this article, we derive a complete mathematical analysis of a coupled 1D-2D model for 2D wave propagation in media including thin slots. Our error estimates are illustrated by numerical results. },
author = {Joly, Patrick, Tordeux, Sébastien},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Slit; slot; wave equation; Helmholtz equation; approximate model.; approximate model},
language = {eng},
month = {2},
number = {1},
pages = {63-97},
publisher = {EDP Sciences},
title = {Asymptotic analysis of an approximate model for time harmonic waves in media with thin slots},
url = {http://eudml.org/doc/249715},
volume = {40},
year = {2006},
}

TY - JOUR
AU - Joly, Patrick
AU - Tordeux, Sébastien
TI - Asymptotic analysis of an approximate model for time harmonic waves in media with thin slots
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2006/2//
PB - EDP Sciences
VL - 40
IS - 1
SP - 63
EP - 97
AB - In this article, we derive a complete mathematical analysis of a coupled 1D-2D model for 2D wave propagation in media including thin slots. Our error estimates are illustrated by numerical results.
LA - eng
KW - Slit; slot; wave equation; Helmholtz equation; approximate model.; approximate model
UR - http://eudml.org/doc/249715
ER -

References

top
  1. T. Abboud and F. Starling, Scattering of an electromagnetic wave by a screen, in Boundary value problems and integral equations in nonsmooth domains (Luminy, 1993), Dekker, New York. Lect. Notes Pure Appl. Math. (1995) 167 1–17.  Zbl0819.35132
  2. M. Artola and M. Cessenat, Diffraction d'une onde électromagnétique par une couche composite mince accolée à un corps conducteur épais. I. Cas des inclusions fortement conductrices. C. R. Acad. Sci. Paris Sér. I Math.313 (1991) 231–236.  Zbl0743.35081
  3. F. Assous, P. Ciarlet, Jr., and J. Segré, Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domains: the singular complement method. J. Comput. Phys.161 (2000) 218–249.  Zbl1007.78014
  4. J. Beale, Scattering frequencies of reasonators. Comm. Pure Appl. Math.26 (1973) 549–563.  Zbl0254.35094
  5. A. Bendali and K. Lemrabet, The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation. SIAM J. Appl. Math.56 (1996) 1664–1693.  Zbl0869.35068
  6. A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. North-Holland Publishing Co., Amsterdam. Stud. Math. Appl.5 (1978).  Zbl0404.35001
  7. A. Buffa and S.H. Christiansen, The electric field integral equation on Lipschitz screens: definitions and numerical approximation. Numer. Math. 94 (2003) 229–267.  Zbl1027.65188
  8. C. Butler and D. Wilton, General analysis of narrow strips and slots. IEEE Trans Ant. and Propag.28 (1980).  
  9. P.G. Ciarlet, Plates and junctions in elastic multi-structures, 14 Recherches en Mathématiques Appliquées [Res. Appl. Math.], Masson, Paris (1990). An asymptotic analysis.  Zbl0706.73046
  10. F. Collino and F. Millot, Fils et méthodes d'éléments finis pour les équations de Maxwell. Le modèle de Holland revisité. Tech. Report 3472, INRIA, (Août 1998).  URIhttp://www.inria.fr
  11. D. Colton and R. Kress, Integral equation methods in scattering theory, John Wiley & Sons Inc., New York, Pure Appl. Math. (1983). A Wiley-Interscience Publication.  Zbl0522.35001
  12. C. Conca and E. Zuazua, Asymptotic analysis of a multidimensional vibrating structure. SIAM J. Math. Anal.25 (1994) 836–858.  Zbl0806.35128
  13. D. Crighton, A. Dowling, J.F. Williams, M. Heckl and F. Leppington, Modern Methods in Analytical acoustics. Lect. Notes, Springer-Verlag, London (1992). An asymptotic analysis.  
  14. R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Tome 3. Masson, Paris (1985).  Zbl0642.35001
  15. B. Engquist and J.C. Nédélec, Effective boundary conditions for acoustic and electromagnetic scattering in thin layers. Tech. Report 278, École Polytechnique CMAP (France) (1993).  
  16. J. Gilbert and R. Holland, Implementation of the thin-slot formalism in the finite-difference code threedii. IEEE Trans. Nuc. Sci.28 (1981).  
  17. D. Givoli, I. Patlashenko and J. Keller, Discrete Dirichlet-to-Neumann maps for unbounded domains. Comput. Methods Appl. Mech. Engrg.164 (1998) 173–185. Exterior problems of wave propagation (Boulder, CO, 1997; San Francisco, CA, 1997).  Zbl0944.65122
  18. P. Grisvard, Elliptic problems in nonsmooth domains 24, Pitman (Advanced Publishing Program), Boston, MA, Monographs Stud. Math. (1985).  Zbl0695.35060
  19. P. Grisvard, Singularities in boundary value problems22, Recherches en Mathématiques Appliquées [Res. Appl. Math.], Masson, Paris (1992).  Zbl0766.35001
  20. D. Guiney, B. Noye and E. Tuck, Transmission of water waves through small apertures. J. Fluid Mech.55 (1972) 149–161.  Zbl0246.76017
  21. I. Harari, I. Patlashenko and D. Givoli, Dirichlet-to-Neumann maps for unbounded wave guides. J. Comput. Phys.143 (1998) 200–223.  Zbl0928.65140
  22. P. Harrington and D. Auckland, Electromagnetic transmission through narrow slots in thick conducting screens. IEEE Trans. Antenna Propagation28 (1980) 616–622.  
  23. R. Holland and L. Simpson, Finite-difference analysis EMP coupling to thin struts and wires. IEEE Trans. Electromagn. Compat.23 (1981).  
  24. P. Joly and S. Tordeux, Modèles asymptotiques pour la propagation des ondes dans les milieux comportant des fentes, Tech. Report RR-5568, INRIA, (May 2005).  URIhttp://www.inria.fr
  25. J. Keller and D. Givoli, Exact nonreflecting boundary conditions. J. Comput. Phys.82 (1989) 172–192.  Zbl0671.65094
  26. G. Kriegsmann, The flanged waveguide antenna: discrete reciprocity and conservation. Wave Motion29 (1999) 81–95.  Zbl1074.78527
  27. H. Le Dret, Problèmes variationnels dans les multi-domaines19, Recherches en Mathématiques Appliquées [Res. Appl. Math.], Masson, Paris (1991). Modélisation des jonctions et applications. [Modeling of junctions and applications].  
  28. N. Lebedev, Special functions and their applications, Revised English edition. Translated and edited by Richard A. Silverman, Prentice-Hall Inc., Englewood Cliffs, NJ (1965).  
  29. J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Springer-Verlag, New York (1972). Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181.  Zbl0223.35039
  30. D. Martin, Documentation de la librairie éléments finis melina. , 1996–2003.  URIhttp://perso.univ-rennes1.fr/daniel.martin/melina
  31. P. McIver and A.D. Rawlins, Two-dimensional wave-scattering problems involving parallel-walled ducts. Quart. J. Mech. Appl. Math.46 (1993) 89–116.  Zbl0777.76016
  32. J.C. Nédélec, Acoustic and electromagnetic equations. Springer-Verlag, New York. Appl. Math. Sci.144 (2001). Integral representations for harmonic problems.  Zbl0981.35002
  33. F. Rogier, Problèmes mathématiques et numériques liés à l'approximation de la géométrie d'un corps diffractant dans les équations de l'électromagnétisme, Ph.D. thesis, Université de Paris 6 (1989).  
  34. E. Sánchez-Palencia, Nonhomogeneous media and vibration theory. Lect. Notes Phys.127 (1980).  Zbl0432.70002
  35. T. Senior and J. Volakis, Approximate Boundary Conditions in Electromagnetics. IEE Pres, New York and London (1995).  Zbl0828.73001
  36. A. Taflove, Computational electrodynamics. Artech House Inc., Boston, MA (1995). The finite-difference time-domain method.  Zbl0840.65126
  37. A. Taflove, K. Umashankar and B. Becker, Calculation and experimental validation of induced currents on coupled wires in an arbitrary shaped cavity. IEEE Trans Antenna Propag.35 (1987) 1248–1257.  
  38. A. Taflove, K. Umashankar, B. Becker, F. Harfoush and K. Yee, Detailed fdtd analysis of electromagnetic fields penetrating narrow slots ans lapped joints in thick conducting screens. IEEE Trans Antenna Propag.36 (1988) 247–257.  
  39. F. Tatout, Propagation d'une onde électromagnétique dans une fente mince. Propagation et réflexion d'ondes en élasticité. Application au contrôle. Ph.D. thesis, École normale supérieure de Cachan (Dec. 1996).  
  40. S. Tordeux, Méthodes asymptotiques pour la propagation des ondes dans les milieux comportant des fentes. Ph.D. thesis, Université de Versailles (2005).  
  41. E. Tuck, Matching problems involving flow through small holes. Academic Press, New York Adv. Appl. Mechanics15 (1975) 89–158.  
  42. G. Watson, Bessel functions and Kapteyn series. Proc. London Math. Soc. (April 1916) 150–174.  Zbl46.0576.03

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.