Analysis of crack singularities in an aging elastic material
Martin Costabel; Monique Dauge; SergeïA. Nazarov; Jan Sokolowski
ESAIM: Mathematical Modelling and Numerical Analysis (2006)
- Volume: 40, Issue: 3, page 553-595
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- M.S. Agranovich and M.I. Vishik, Elliptic problems with the parameter and parabolic problems of general type. Uspekhi Mat. Nauk19 (1963) 53–161 (English transl.: Russ. Math. Surv.19 (1964) 53–157).
- N.Kh. Arutyunyan and V.B. Kolmanovskii, The theory of creeping heterogeneous bodies. Nauka, Moscow (1983) 336.
- N.Kh. Arutyunyan, S.A. Nazarov and B.A. Shoikhet, Bounds and the asymptote of the stress-strain state of a threedimensional body with a crack in elasticity theory and creep theory. Dokl. Akad. Nauk SSSR266 (1982) 1361–1366 (English transl.: Sov. Phys. Dokl.27 (1982) 817–819).
- N.Kh. Arutyunyan, A.D. Drozdov and V.E. Naumov, Mechanics of growing visco-elasto-plastic bodies. Nauka, Moscow (1987) 472.
- C. Atkinson and J.P. Bourne, Stress singularities in viscoelastic media. Q. J. Mech. Appl. Math.42 (1989) 385–412.
- C. Atkinson and J.P. Bourne, Stress singularities in angular sectors of viscoelastic media. Int. J. Eng. Sci.28 (1990) 615–650.
- J.P. Bourne and C. Atkinson, Stress singularities in viscoelastic media. II. Plane-strain stress singularities at corners. IMA J. Appl. Math.44 (1990) 163–180.
- M. Costabel and M. Dauge, Construction of corner singularities for Agmon-Douglis-Nirenberg elliptic systems. Math. Nachr.162 (1993) 209–237.
- M. Costabel and M. Dauge, Crack singularities for general elliptic systems. Math. Nachr.235 (2002) 29–49.
- M. Costabel, M. Dauge and R. Duduchava, Asymptotics without logarithmic terms for crack problems. Comm. Partial Differential Equations28 (2003) 869–926.
- R. Duduchava and W.L. Wendland, The Wiener-Hopf method for systems of pseudodifferential equations with an application to crack problems. Integr. Equat. Oper. Th.23 (1995) 294–335.
- R. Duduchava, A.M. Sändig and W.L. Wendland, Interface cracks in anisotropic composites. Math. Method. Appl. Sci.22 (1999) 1413–1446.
- J. Dundurs, Effect of elastic constants on stress in composite under plane deformations. J. Compos. Mater.1 (1967) 310.
- G. Gripenberg, S.-O. Londen and O. Staffans, Volterra Integral and Functional equations. Cambridge Univ. Press, Cambridge (1990).
- V.A. Kondratiev, Boundary problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Obshch.16 (1967) 209–292 (English transl.: Trans. Moscow Math. Soc.16 (1967) 227–313).
- V.A. Kondratiev and O.A. Oleinik, Boundary-value problems for the system of elasticity theory in unbounded domains. Korn's inequalities. Uspehi Mat. Nauk43 (1988) 55–98 (English transl.: Russ. Math. Surv.43 (1988) 65–119).
- V.A. Kozlov, V.G. Maz'ya and J. Rossmann, Elliptic boundary value problems in domains with point singularities. Amer. Math. Soc., Providence (1997).
- M.A. Krasnosel'skii, G.M. Vainikko and P.P. Zabreiko, Approximate solutions to integral equations. Nauka, Moscow (1969) 455.
- V.G. Maz'ya and B.A. Plamenevskii, Weighted spaces with nonhomogeneous norms and boundary value problems in domains with conical points. In: Elliptische Differentialgleichungen (Meeting in Rostock, 1977), Wilhelm-Pieck-Univ., Rostock (1978) 161–189 (English transl.: Amer. Math. Soc. Transl. Ser. 2123 (1984) 89–107).
- V.G. Maz'ya and B.A. Plamenevskii, The coefficients in the asymptotics of solutions of elliptic boundary value problems in domains with conical points. Math. Nachr.76 (1997) 29–60 (English transl.: Amer. Math. Soc. Transl. Ser. 2123 (1984) 57–88).
- S.E. Mikhailov, Singularities of stresses in a plane hereditarily-elastic aging solid with corner points. Mech. Solids (Izv. AN SSSR. MTT)19 (1984) 126–139.
- S.E. Mikhailov, Singular stress behavior in a bonded hereditarily-elastic aging wedge. Part. I: Problem statement and degenerate case. Math. Method. Appl. Sci.20 (1997) 13–30.
- S.E. Mikhailov, Singular stress behavior in a bonded hereditarily-elastic aging wedge. Part. II: General heredity. Math. Method. Appl. Sci.20 (1997) 31–45.
- S.A. Nazarov, Vishik-Lyusternik method for elliptic boundary-value problems in regions with conical points. 1. The problem in a cone. Sibirsk. Mat. Zh.22 (1981) 142–163 (English transl.: Siberian Math. J. 22 (1982) 594–611).
- S.A. Nazarov, Weight functions and invariant integrals. Vychisl. Mekh. Deform. Tverd. Tela.1 (1990) 17–31. (Russian)
- S.A. Nazarov, Self-adjoint boundary value problems. The polynomial property and formal positive operators. St.-Petersburg Univ., Probl. Mat. Anal.16 (1997) 167–192. (Russian)
- S.A. Nazarov, The interface crack in anisotropic bodies. Stress singularities and invariant integrals. Prikl. Mat. Mekh.62 (1998) 489–502 (English transl.: J. Appl. Math. Mech.62 (1998) 453–464).
- S.A. Nazarov, The polynomial property of self-adjoint elliptic boundary-value problems and the algebraic description of their attributes. Uspekhi mat. nauk54 (1999) 77–142 (English transl.: Russ. Math. Surv.54 (1999) 947–1014).
- S.A. Nazarov and B.A. Shoikhet, Asymptotic behavior of the solution of a certain integro-differential equation near an angular point of the boundary. Mat. Zametki.33 (1983) 583–594 (English transl.: Math. Notes33 (1983) 300–306).
- S.A. Nazarov and B.A. Plamenevskii, Neumann problem for selfadjoint elliptic systems in a domain with piecewise smooth boundary. Trudy Leningrad. Mat. Obshch.1 (1990) 174–211 (English transl.: Amer. Math. Soc. Transl. Ser. 2155 (1993) 169–206).
- S.A. Nazarov and B.A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries. Walter de Gruyter, Berlin, New York (1994) 525.
- S.A. Nazarov, L.P. Trapeznikov and B.A. Shoikhet, On the correspondence principle in the plane creep problem of aging homogeneous media with developing slits and cavities. Prikl. Mat. Mekh.51 (1987) 504–512 (English transl.: J. Appl. Math. Mech.51 (1987) 392–399).
- J. Nečas, Les méthodes directes en théorie des équations elliptiques. Masson-Academia, Paris-Prague (1967).
- A.C. Pipkin, Lectures on viscoelasticity theory. Springer, NY (1972) 180.
- G.S. Vardanyan and V.D. Sheremet, On certain theorems in the plane problem of the creep theory. Izvestia AN Arm. SSR. Mechanics4 (1973) 60–76.
- V.P. Zhuravlev, S.A. Nazarov and B.A. Shoikhet, Asymptotics of the stress-strain state near the tip of a crack in an inhomogeneously aging bodies. Dokl. Akad. Nauk Armenian SSR74 (1982) 26–29. (Russian)
- V.P. Zhuravlev, S.A. Nazarov and B.A. Shoikhet, Asymptotics near the tip of a crack of the state of stress and strain of inhomogeneously aging bodies. Prikl. Mat. Mekh.47 (1983) 200–208 (English transl.: J. Appl. Math. Mech.47 (1984) 162–170).