A new domain decomposition method for the compressible Euler equations

Victorita Dolean; Frédéric Nataf

ESAIM: Mathematical Modelling and Numerical Analysis (2006)

  • Volume: 40, Issue: 4, page 689-703
  • ISSN: 0764-583X

Abstract

top
In this work we design a new domain decomposition method for the Euler equations in 2 dimensions. The starting point is the equivalence with a third order scalar equation to whom we can apply an algorithm inspired from the Robin-Robin preconditioner for the convection-diffusion equation [Achdou and Nataf, C. R. Acad. Sci. Paris Sér. I325 (1997) 1211–1216]. Afterwards we translate it into an algorithm for the initial system and prove that at the continuous level and for a decomposition into 2 sub-domains, it converges in 2 iterations. This property cannot be conserved strictly at discrete level and for arbitrary domain decompositions but we still have numerical results which confirm a very good stability with respect to the various parameters of the problem (mesh size, Mach number, ...).

How to cite

top

Dolean, Victorita, and Nataf, Frédéric. "A new domain decomposition method for the compressible Euler equations." ESAIM: Mathematical Modelling and Numerical Analysis 40.4 (2006): 689-703. <http://eudml.org/doc/249735>.

@article{Dolean2006,
abstract = { In this work we design a new domain decomposition method for the Euler equations in 2 dimensions. The starting point is the equivalence with a third order scalar equation to whom we can apply an algorithm inspired from the Robin-Robin preconditioner for the convection-diffusion equation [Achdou and Nataf, C. R. Acad. Sci. Paris Sér. I325 (1997) 1211–1216]. Afterwards we translate it into an algorithm for the initial system and prove that at the continuous level and for a decomposition into 2 sub-domains, it converges in 2 iterations. This property cannot be conserved strictly at discrete level and for arbitrary domain decompositions but we still have numerical results which confirm a very good stability with respect to the various parameters of the problem (mesh size, Mach number, ...). },
author = {Dolean, Victorita, Nataf, Frédéric},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Smith factorization; domain decomposition method; Euler equations.; Euler equations},
language = {eng},
month = {11},
number = {4},
pages = {689-703},
publisher = {EDP Sciences},
title = {A new domain decomposition method for the compressible Euler equations},
url = {http://eudml.org/doc/249735},
volume = {40},
year = {2006},
}

TY - JOUR
AU - Dolean, Victorita
AU - Nataf, Frédéric
TI - A new domain decomposition method for the compressible Euler equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2006/11//
PB - EDP Sciences
VL - 40
IS - 4
SP - 689
EP - 703
AB - In this work we design a new domain decomposition method for the Euler equations in 2 dimensions. The starting point is the equivalence with a third order scalar equation to whom we can apply an algorithm inspired from the Robin-Robin preconditioner for the convection-diffusion equation [Achdou and Nataf, C. R. Acad. Sci. Paris Sér. I325 (1997) 1211–1216]. Afterwards we translate it into an algorithm for the initial system and prove that at the continuous level and for a decomposition into 2 sub-domains, it converges in 2 iterations. This property cannot be conserved strictly at discrete level and for arbitrary domain decompositions but we still have numerical results which confirm a very good stability with respect to the various parameters of the problem (mesh size, Mach number, ...).
LA - eng
KW - Smith factorization; domain decomposition method; Euler equations.; Euler equations
UR - http://eudml.org/doc/249735
ER -

References

top
  1. Y. Achdou and F. Nataf, A Robin-Robin preconditioner for an advection-diffusion problem. C. R. Acad. Sci. Paris Sér. I325 (1997) 1211–1216.  Zbl0893.65061
  2. Y. Achdou, P. Le Tallec, F. Nataf and M. Vidrascu, A domain decomposition preconditioner for an advection-diffusion problem. Comput. Methods Appl. Mech. Engrg.184 (2000) 145–170.  Zbl0979.76043
  3. J.D. Benamou and B. Després, A domain decomposition method for the Helmholtz equation and related optimal control. J. Comp. Phys.136 (1997) 68–82.  Zbl0884.65118
  4. M. Bjørhus, A note on the convergence of discretized dynamic iteration. BIT35 (1995) 291–296.  Zbl0833.65074
  5. J.-F. Bourgat, R. Glowinski, P. Le Tallec and M. Vidrascu, Variational formulation and algorithm for trace operator in domain decomposition calculations, in Domain Decomposition Methods, T. Chan, R. Glowinski, J. Périaux and O. Widlund Eds., Philadelphia, PA, SIAM (1989) 3–16.  Zbl0684.65094
  6. X.-C. Cai, C. Farhat and M. Sarkis, A minimum overlap restricted additive Schwarz preconditioner and appication in 3D flow simulations, in Proceedings of the 10th Domain Decomposition Methods in Sciences and Engineering, C. Farhat J. Mandel and X.-C. Cai Eds., Contemporary Mathematics, AMS 218 (1998) 479–485.  Zbl0936.76036
  7. P. Chevalier and F. Nataf, Symmetrized method with optimized second-order conditions for the Helmholtz equation, in Domain Decomposition Methods, 10 (Boulder, CO, 1997). Amer. Math. Soc., Providence, RI (1998) 400–407.  Zbl0909.65105
  8. S. Clerc, Non-overlapping Schwarz method for systems of first order equations. Cont. Math.218 (1998) 408–416.  Zbl0935.76049
  9. V. Dolean and F. Nataf, An optimized Schwarz algorithm for the compressible Euler equations. Technical Report 556, CMAP, École Polytechnique (2004).  Zbl1146.76629
  10. V. Dolean, S. Lanteri and F. Nataf, Construction of interface conditions for solving compressible Euler equations by non-overlapping domain decomposition methods. Int. J. Numer. Meth. Fluids40 (2002) 1485–1492.  Zbl1025.76021
  11. V. Dolean, S. Lanteri and F. Nataf, Convergence analysis of a Schwarz type domain decomposition method for the solution of the Euler equations. Appl. Num. Math.49 (2004) 153–186.  Zbl1146.76629
  12. B. Engquist and H.-K. Zhao, Absorbing boundary conditions for domain decomposition. Appl. Numer. Math.27 (1998) 341–365.  Zbl0935.65135
  13. M.J. Gander and L. Halpern, Méthodes de relaxation d'ondes pour l'équation de la chaleur en dimension 1. C.R. Acad. Sci. Paris, Sér. I336 (2003) 519–524.  Zbl1028.65100
  14. M.J. Gander, L. Halpern and F. Nataf, Optimal Schwarz waveform relaxation for the one dimensional wave equation. Technical Report 469, CMAP, École Polytechnique (2001).  Zbl1085.65077
  15. M.J. Gander, F. Magoulès and F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput.24 (2002) 38–60.  Zbl1021.65061
  16. F.R. Gantmacher, Théorie des matrices. Tome 1: Théorie générale. Traduit du Russe par C. Sarthou. Collection Universitaire de Mathématiques, No. 18. Dunod, Paris (1966).  Zbl0136.00410
  17. F.R. Gantmacher, Théorie des matrices. Tome 2: Questions spéciales et applications. Traduit du Russe par C. Sarthou. Collection Universitaire de Mathématiques, No. 19. Dunod, Paris (1966).  Zbl0136.00410
  18. F.R. Gantmacher, Theorie des matrices. Dunod (1966).  Zbl0136.00410
  19. F.R. Gantmacher, The theory of matrices. Vol. 1. AMS Chelsea Publishing, Providence, RI (1998). Translated from the Russian by K.A. Hirsch, Reprint of the 1959 translation.  Zbl0927.15002
  20. L. Gerardo-Giorda, P. Le Tallec and F. Nataf, A Robin-Robin preconditioner for advection-diffusion equations with discontinuous coefficients. Comput. Methods Appl. Mech. Engrg.193 (2004) 745–764.  Zbl1053.76039
  21. R. Glowinski, Y.A. Kuznetsov, G. Meurant, J. Periaux and O.B. Widlund, Eds. Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, Philadelphia, PA, SIAM (1991).  Zbl0758.00010
  22. C. Japhet, F. Nataf and F. Rogier, The optimized order 2 method. Application to convection-diffusion problems. Future Generation Computer Systems FUTURE18 (2001).  Zbl1050.65124
  23. S.-C. Lee, M.N. Vouvakis and J.-F. Lee, A non-overlapping domain decomposition method with non-matching grids for modeling large finite antenna arrays. J. Comput. Phys.203 (2005) 1–21.  Zbl1059.78042
  24. J. Li, A Dual-Primal FETI method for incompressible Stokes equations. Numer. Math.102 (2005) 257–275.  Zbl1185.76813
  25. J. Li and O. Widlund, BDDC algorithms for incompressible Stokes equations. Technical report (2006) (submitted).  Zbl1233.76077
  26. P.-L. Lions, On the Schwarz alternating method. III: a variant for nonoverlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, held in Houston, Texas, March 20–22, 1989, T.F. Chan, R. Glowinski, J. Périaux and O. Widlund, Eds., Philadelphia, PA, SIAM (1990).  
  27. J. Mandel, Balancing domain decomposition. Commun. Appl. Numer. M.9 (1992) 233–241.  Zbl0796.65126
  28. A. Quarteroni, Domain decomposition methods for systems of conservation laws: spectral collocation approximation. SIAM J. Sci. Stat. Comput.11 (1990) 1029–1052.  Zbl0711.65082
  29. A. Quarteroni and L. Stolcis, Homogeneous and heterogeneous domain decomposition methods for compressible flow at high reynolds numbers. Technical Report 33, CRS4 (1996).  Zbl0869.76067
  30. Y.H. De Roeck and P. Le Tallec, Analysis and Test of a Local Domain Decomposition Preconditioner, in R. Glowinski et al. [21] (1991).  
  31. A. Toselli and O. Widlund, Domain Decomposition Methods – Algorithms and Theory. Springer Series in Computational Mathematics. Springer Verlag (2004).  Zbl1069.65138
  32. J. T. Wloka, B. Rowley and B. Lawruk, Boundary value problems for elliptic systems. Cambridge University Press, Cambridge (1995).  Zbl0836.35042

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.