On semidefinite bounds for maximization of a non-convex quadratic objective over the l1 unit ball
Mustafa Ç. Pinar; Marc Teboulle
RAIRO - Operations Research (2006)
- Volume: 40, Issue: 3, page 253-265
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topReferences
top- M.X. Goemans and D.P. Williamson, Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems using Semidefinite Programming. J. ACM42 (1995) 1115–1145.
- J.-B. Hiriart-Urruty, Conditions for Global Optimality, in Handbook for Global Optimization. Kluwer Academic Publishers, Dordrecht, Holland (1999) 1–26.
- J.-B. Hiriart-Urruty, Conditions for Global Optimality 2. J. Global Optim.13 (1998) 349–367.
- J.-B. Hiriart-Urruty, Global Optimality Conditions in Maximizing a Convex Quadratic Function under Convex Quadratic Constraints. J. Global Optim.21 (2001) 445–455.
- R.A. Horn and C.R. Johnson, Matrix Analysis. Cambridge University Press, Cambridge (1985).
- V. Jeyakumar, A.M. Rubinov and Z.Y. Wu, Non-convex Quadratic Minimization Problems with Quadratic Constraints: Global Optimality Conditions. Technical Report AMR05/19, University of South Wales, School of Mathematics (2005).
- V. Jeyakumar, A.M. Rubinov and Z.Y. Wu, Sufficient Global Optimality Conditions for Non-convex Quadratic Minimization Problems with Box Constraints. Technical Report AMR05/20, University of South Wales, School of Mathematics (2005).
- J.-B. Lasserre, Global Optimization with Polynomials and the problem of moments. SIAM J. Optim.11 (2001) 796–817.
- J.-B. Lasserre, GloptiPoly: Global Optimization over Polynomials with Matlab and SeDuMi. ACM Trans. Math. Software29 (2003) 165–194.
- M. Laurent, A comparison of the Sherali-Adams, Lovasz-Schrijver and Lasserre relaxations for 0-1 programming. Math. Oper. Res.28 (2003) 470–496.
- L. Lovasz and A. Schrijver, Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim.1 (1991) 166–190.
- Y. Nesterov, Semidefinite Relaxation and Non-convex Quadratic Optimization. Optim. Methods Softw.12 (1997) 1–20.
- Y. Nesterov, Global Quadratic Optimization via Conic Relaxation, in Handbook of Semidefinite Programming, edited by H. Wolkowicz, R. Saigal and L. Vandenberghe. Kluwer Academic Publishers, Boston (2000) 363–384.
- R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, NJ (1970).
- N.Z. Shor, On a bounding method for quadratic extremal problems with 0-1 variables. Kibernetika2 (1985) 48–50.
- H. Wolkowicz, R. Saigal and L. Vandenberghe (Editors), Handbook of semidefinite programming: Theory, Algorithms, and Applications. Kluwer Academic Publishers, Boston, MA (2000).
- Y. Ye, Approximating Quadratic Programming with Bound and Quadratic Constraints. Math. Program.84 (1999) 219–226.
- S. Zhang, Quadratic Maximization and Semidefinite Relaxation. Math. Program.87 (2000) 453–465.