Parabolic geometries as conformal infinities of Einstein metrics

Olivier Biquard; Rafe Mazzeo

Archivum Mathematicum (2006)

  • Volume: 042, Issue: 5, page 85-104
  • ISSN: 0044-8753

How to cite

top

Biquard, Olivier, and Mazzeo, Rafe. "Parabolic geometries as conformal infinities of Einstein metrics." Archivum Mathematicum 042.5 (2006): 85-104. <http://eudml.org/doc/249799>.

@article{Biquard2006,
author = {Biquard, Olivier, Mazzeo, Rafe},
journal = {Archivum Mathematicum},
keywords = {Einstein metrics; parabolic geometry; symmetric spaces; conformal structure},
language = {eng},
number = {5},
pages = {85-104},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Parabolic geometries as conformal infinities of Einstein metrics},
url = {http://eudml.org/doc/249799},
volume = {042},
year = {2006},
}

TY - JOUR
AU - Biquard, Olivier
AU - Mazzeo, Rafe
TI - Parabolic geometries as conformal infinities of Einstein metrics
JO - Archivum Mathematicum
PY - 2006
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 042
IS - 5
SP - 85
EP - 104
LA - eng
KW - Einstein metrics; parabolic geometry; symmetric spaces; conformal structure
UR - http://eudml.org/doc/249799
ER -

References

top
  1. Anderson M., Geometric aspects of the AdS/CFT correspondence, AdS/CFT correspondence: Einstein metrics and their conformal boundaries (O. Biquard, éd.), IRMA Lectures Math. Theoret. Phys. 8, EMS (2005), 1–31. Zbl1071.81553MR2160865
  2. Biquard O., Métriques d’Einstein asymptotiquement symétriques, Astérisque 265 (2000), vi+109. Zbl0967.53030MR1760319
  3. Biquard O., Quaternionic contact structures, Proceedings of the Second Meeting on Quaternionic Structures in Mathematics and Physics, (Roma 1999) (S. Marchiafava, P. Piccinni et M. Pontecorvo, éds.), World Sci. (2001), available electronically in the EMS Electronic Library, 23–30. (1999) MR1848655
  4. Biquard O., Métriques autoduales sur la boule, Invent. Math. 148, No. 3 (2002), 545–607. Zbl1040.53061MR1908060
  5. Biquard O. (éd.), AdS/CFT correspondence: Einstein metrics and their conformal boundaries, IRMA Lectures Math. Theoret. Phys. 8, Zürich, 2005. Zbl1062.81002MR2160864
  6. Biquard O., Cauchy-Riemann 3-Manifolds and Einstein Fillings, Perspectives in Riemannian Geometry, CRM Proc. Lecture Notes 40, AMS (2006), 27–46. MR2251002
  7. Bland J. S., –, Contact geometry and CR structures on S 3 , Acta Math. 172, No. 1 (1994), 1–49. (1994) MR1263996
  8. Biquard O., R. Mazzeo, A nonlinear Poisson transform for Einstein metrics on product spaces, in preparation. Zbl1232.53039
  9. Chruściel P. T., Delay E., Lee J. M., Skinner D. N., Boundary regularity of conformally compact Einstein metrics, J. Differential Geom. 69, No. 1 (2005), 111–136. Zbl1088.53031MR2169584
  10. Cheng S. Y., Yau S. T., On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation, Comm. Pure Appl. Math. 33, No. 4 (1980), 507–544. (1980) MR0575736
  11. Duchemin D., Quaternionic contact structures in dimension 7, Ann. Inst. Fourier 56, No. 4 (2006), 851–885. Zbl1122.53025MR2266881
  12. Duchemin D., Géométrie quaternionienne en basses dimensions, Prépublication de l’Institut de Recherche Mathématique Avancée, 2004/23, Université Louis Pasteur. Institut de Recherche Mathématique Avancée, Strasbourg, 2004, Thèse, Université Louis Pasteur, Strasbourg, 2004. MR2152238
  13. Epstein C. L., CR-structures on three-dimensional circle bundles, Invent. Math. 109, No. 2 (1992), 351–403. (1992) Zbl0786.32013MR1172695
  14. Fefferman C. L., Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. of Math. 103, No. 2 (1976), 395–416. (1976) Zbl0332.32018MR0407320
  15. Fefferman C., Graham C. R., Conformal invariants, Astérisque (1985), no. hors série, 95–116, The mathematical heritage of Élie Cartan (Lyon, 1984). (1985) Zbl0602.53007MR0837196
  16. Galicki K., Multi-centre metrics with negative cosmological constant, Classical Quantum Gravity 8, No. 8 (1991), 1529–1543. (1991) Zbl0737.53061MR1122250
  17. Graham C. R., Lee J. M., Einstein metrics with prescribed conformal infinity on the ball, Adv. Math. 87, No. 2, (1991), 186–225. (1991) Zbl0765.53034MR1112625
  18. Goldman W. M., Complex hyperbolic geometry, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1999, Oxford Science Publications. (1999) Zbl0939.32024MR1695450
  19. Helgason S., Groups and geometric analysis, Pure Appl. Math. vol. 113, Academic Press Inc., Orlando, FL, 1984, Integral geometry, invariant differential operators, and spherical functions. (1984) Zbl0543.58001MR0754767
  20. Helgason S., Geometric analysis on symmetric spaces, Math. Surveys Monogr. 39 (1994). (1994) Zbl0809.53057MR1280714
  21. Hitchin N. J., Twistor spaces, Einstein metrics and isomonodromic deformations, J. Differential Geom. 42, No. 1 (1995), 30–112. (1995) Zbl0861.53049MR1350695
  22. LeBrun C., -space with a cosmological constant, Proc. Roy. Soc. London Ser. A 380, No. 1778 (1982), 171–185. (1982) MR0652038
  23. LeBrun C., On complete quaternionic-Kähler manifolds, Duke Math. J. 63, No. 3, (1991), 723–743. (1991) Zbl0764.53045MR1121153
  24. Lee J. M., Fredholm operators and Einstein metrics on conformally compact manifolds, Mem. Amer. Math. Soc., 183 (2006). Zbl1112.53002MR2252687
  25. Lempert L., On three-dimensional Cauchy-Riemann manifolds, J. Amer. Math. Soc. 5, No. 4 (1992), 923–969. (1992) Zbl0781.32014MR1157290
  26. Lee J. M., Melrose R., Boundary behaviour of the complex Monge-Ampère equation, Acta Math. 148 (1982), 159–192. (1982) Zbl0496.35042MR0666109
  27. Maldacena J., The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2, No. 2 (1998), 231–252. (1998) Zbl0914.53047MR1633016
  28. Mostow G. D., Strong rigidity of locally symmetric spaces, Ann. of Math. Stud. No. 78, 1973. (1973) Zbl0265.53039MR0385004
  29. Mazzeo R., Vasy A., Scattering theory on S L ( 3 ) / S O ( 3 ) : connections with quantum 3 -body scattering, Proc. London Math. Soc., to appear. Zbl1117.43009MR2325313
  30. Mazzeo R., Vasy A., Resolvents and Martin boundaries of product spaces, Geom. Funct. Anal. 12, No. 5 (2002), 1018–1079. Zbl1031.58020MR1937834
  31. Mazzeo R., Vasy A., Analytic continuation of the resolvent of the Laplacian on @ f o n t @ u p r i g h t S L ( 3 ) / S O ( 3 ) , Amer. J. Math. 126, No. 4 (2004), 821–844. MR2075483
  32. Mazzeo R., Vasy A., Analytic continuation of the resolvent of the Laplacian on symmetric spaces of noncompact type, J. Funct. Anal. 228, No. 2 (2005), 311–368. Zbl1082.58029MR2175410
  33. Pedersen H., Einstein metrics, spinning top motions and monopoles, Math. Ann. 274, No. 1 (1986), 35–59. (1986) Zbl0566.53058MR0834105
  34. Yamaguchi K., Differential systems associated with simple graded Lie algebras, Progress in differential geometry, Adv. Stud. Pure Math. 22 (1993), 413–494. (1993) Zbl0812.17018MR1274961

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.