Quaternionic contact structures in dimension
- [1] Université du Québec à Montréal Centre interuniversitaire de recherche en géométrie différentielle et topologie CP 8888 Succursale centre-ville Montréal (QC) H3C 3P8 (Canada)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 4, page 851-885
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDuchemin, David. "Quaternionic contact structures in dimension $7$." Annales de l’institut Fourier 56.4 (2006): 851-885. <http://eudml.org/doc/10174>.
@article{Duchemin2006,
abstract = {The conformal infinity of a quaternionic-Kähler metric on a $4n$-manifold with boundary is a codimension $3$ distribution on the boundary called quaternionic contact. In dimensions $4n-1$ greater than $7$, a quaternionic contact structure is always the conformal infinity of a quaternionic-Kähler metric. On the contrary, in dimension $7$, we prove a criterion for quaternionic contact structures to be the conformal infinity of a quaternionic-Kähler metric. This allows us to find the quaternionic-contact structures on the $7$-sphere close to the conformal infinity of the quaternionic hyperbolic metric and which are the boundaries of complete quaternionic-Kähler metrics on the $8$-ball. Finally, we construct a $25$-parameter family of Sp$(1)$-invariant complete quaternionic-Kähler metrics on the $8$-ball together with the $25$-parameter family of their boundaries.},
affiliation = {Université du Québec à Montréal Centre interuniversitaire de recherche en géométrie différentielle et topologie CP 8888 Succursale centre-ville Montréal (QC) H3C 3P8 (Canada)},
author = {Duchemin, David},
journal = {Annales de l’institut Fourier},
keywords = {contact structures; quaternionic-kähler metrics; twistor spaces; quaternionic Kähler metrics},
language = {eng},
number = {4},
pages = {851-885},
publisher = {Association des Annales de l’institut Fourier},
title = {Quaternionic contact structures in dimension $7$},
url = {http://eudml.org/doc/10174},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Duchemin, David
TI - Quaternionic contact structures in dimension $7$
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 4
SP - 851
EP - 885
AB - The conformal infinity of a quaternionic-Kähler metric on a $4n$-manifold with boundary is a codimension $3$ distribution on the boundary called quaternionic contact. In dimensions $4n-1$ greater than $7$, a quaternionic contact structure is always the conformal infinity of a quaternionic-Kähler metric. On the contrary, in dimension $7$, we prove a criterion for quaternionic contact structures to be the conformal infinity of a quaternionic-Kähler metric. This allows us to find the quaternionic-contact structures on the $7$-sphere close to the conformal infinity of the quaternionic hyperbolic metric and which are the boundaries of complete quaternionic-Kähler metrics on the $8$-ball. Finally, we construct a $25$-parameter family of Sp$(1)$-invariant complete quaternionic-Kähler metrics on the $8$-ball together with the $25$-parameter family of their boundaries.
LA - eng
KW - contact structures; quaternionic-kähler metrics; twistor spaces; quaternionic Kähler metrics
UR - http://eudml.org/doc/10174
ER -
References
top- A. L. Besse, Einstein manifolds, (1987), Springer-Verlag, Berlin Zbl0613.53001MR867684
- O. Biquard, Métriques d’Einstein asymptotiquement symétriques, Astérisque 265 (2000), Société Mathématique de France Zbl0967.53030MR1760319
- O. Biquard, Métriques autoduales sur la boule, Invent. Math. 148 (2002), 545-607 Zbl1040.53061MR1908060
- K. Galicki, Multi-centre metrics with negative cosmological constant, Class. Quantum Grav. 8 (1991), 1529-1543 Zbl0737.53061MR1122250
- C. Robin Graham, John M. Lee, Einstein metrics with prescribed conformal infinity on the ball, Advances in Math. 87 (1991), 186-225 Zbl0765.53034MR1112625
- M. Konishi, On manifolds with Sasakian 3-structures over quaternion-Kählerian manifolds, Kodai Math. Sem. Reps. 26 (1975), 194-200 Zbl0308.53035MR377782
- C. LeBrun, -Space with a cosmological constant, Proc. R. Soc. Lond. A 380 (1982), 171-185 Zbl0549.53042MR652038
- C. LeBrun, Quaternionic-Kähler manifolds and conformal geometry, Math. Ann. 284 (1989), 353-376 Zbl0674.53036MR1001707
- C. LeBrun, On complete quaternionic-Kähler manifolds, Duke Math. J. 63 (1991), 723-743 Zbl0764.53045MR1121153
- R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, 91 (2002), Math. Surv. Mon. (AMS) Zbl1044.53022MR1867362
- S. Salamon, Quaternionic Kähler manifolds, Invent. Math. 67 (1982), 143-171 Zbl0486.53048MR664330
- S. Salamon, Almost parallel structures, Global differential geometry: the mathematical legacy of Alfred Gray (2000), 162-181 Zbl1008.53043MR1871007
- A. Swann, Aspects symplectiques de la géométrie quaternionique, C. R. Acad. Sci. Paris, Série I 308 (1989), 225-228 Zbl0661.53023MR986384
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.