Quaternionic contact structures in dimension 7

David Duchemin[1]

  • [1] Université du Québec à Montréal Centre interuniversitaire de recherche en géométrie différentielle et topologie CP 8888 Succursale centre-ville Montréal (QC) H3C 3P8 (Canada)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 4, page 851-885
  • ISSN: 0373-0956

Abstract

top
The conformal infinity of a quaternionic-Kähler metric on a 4 n -manifold with boundary is a codimension 3 distribution on the boundary called quaternionic contact. In dimensions 4 n - 1 greater than 7 , a quaternionic contact structure is always the conformal infinity of a quaternionic-Kähler metric. On the contrary, in dimension 7 , we prove a criterion for quaternionic contact structures to be the conformal infinity of a quaternionic-Kähler metric. This allows us to find the quaternionic-contact structures on the 7 -sphere close to the conformal infinity of the quaternionic hyperbolic metric and which are the boundaries of complete quaternionic-Kähler metrics on the 8 -ball. Finally, we construct a 25 -parameter family of Sp ( 1 ) -invariant complete quaternionic-Kähler metrics on the 8 -ball together with the 25 -parameter family of their boundaries.

How to cite

top

Duchemin, David. "Quaternionic contact structures in dimension $7$." Annales de l’institut Fourier 56.4 (2006): 851-885. <http://eudml.org/doc/10174>.

@article{Duchemin2006,
abstract = {The conformal infinity of a quaternionic-Kähler metric on a $4n$-manifold with boundary is a codimension $3$ distribution on the boundary called quaternionic contact. In dimensions $4n-1$ greater than $7$, a quaternionic contact structure is always the conformal infinity of a quaternionic-Kähler metric. On the contrary, in dimension $7$, we prove a criterion for quaternionic contact structures to be the conformal infinity of a quaternionic-Kähler metric. This allows us to find the quaternionic-contact structures on the $7$-sphere close to the conformal infinity of the quaternionic hyperbolic metric and which are the boundaries of complete quaternionic-Kähler metrics on the $8$-ball. Finally, we construct a $25$-parameter family of Sp$(1)$-invariant complete quaternionic-Kähler metrics on the $8$-ball together with the $25$-parameter family of their boundaries.},
affiliation = {Université du Québec à Montréal Centre interuniversitaire de recherche en géométrie différentielle et topologie CP 8888 Succursale centre-ville Montréal (QC) H3C 3P8 (Canada)},
author = {Duchemin, David},
journal = {Annales de l’institut Fourier},
keywords = {contact structures; quaternionic-kähler metrics; twistor spaces; quaternionic Kähler metrics},
language = {eng},
number = {4},
pages = {851-885},
publisher = {Association des Annales de l’institut Fourier},
title = {Quaternionic contact structures in dimension $7$},
url = {http://eudml.org/doc/10174},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Duchemin, David
TI - Quaternionic contact structures in dimension $7$
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 4
SP - 851
EP - 885
AB - The conformal infinity of a quaternionic-Kähler metric on a $4n$-manifold with boundary is a codimension $3$ distribution on the boundary called quaternionic contact. In dimensions $4n-1$ greater than $7$, a quaternionic contact structure is always the conformal infinity of a quaternionic-Kähler metric. On the contrary, in dimension $7$, we prove a criterion for quaternionic contact structures to be the conformal infinity of a quaternionic-Kähler metric. This allows us to find the quaternionic-contact structures on the $7$-sphere close to the conformal infinity of the quaternionic hyperbolic metric and which are the boundaries of complete quaternionic-Kähler metrics on the $8$-ball. Finally, we construct a $25$-parameter family of Sp$(1)$-invariant complete quaternionic-Kähler metrics on the $8$-ball together with the $25$-parameter family of their boundaries.
LA - eng
KW - contact structures; quaternionic-kähler metrics; twistor spaces; quaternionic Kähler metrics
UR - http://eudml.org/doc/10174
ER -

References

top
  1. A. L. Besse, Einstein manifolds, (1987), Springer-Verlag, Berlin Zbl0613.53001MR867684
  2. O. Biquard, Métriques d’Einstein asymptotiquement symétriques, Astérisque 265 (2000), Société Mathématique de France Zbl0967.53030MR1760319
  3. O. Biquard, Métriques autoduales sur la boule, Invent. Math. 148 (2002), 545-607 Zbl1040.53061MR1908060
  4. K. Galicki, Multi-centre metrics with negative cosmological constant, Class. Quantum Grav. 8 (1991), 1529-1543 Zbl0737.53061MR1122250
  5. C. Robin Graham, John M. Lee, Einstein metrics with prescribed conformal infinity on the ball, Advances in Math. 87 (1991), 186-225 Zbl0765.53034MR1112625
  6. M. Konishi, On manifolds with Sasakian 3-structures over quaternion-Kählerian manifolds, Kodai Math. Sem. Reps. 26 (1975), 194-200 Zbl0308.53035MR377782
  7. C. LeBrun, -Space with a cosmological constant, Proc. R. Soc. Lond. A 380 (1982), 171-185 Zbl0549.53042MR652038
  8. C. LeBrun, Quaternionic-Kähler manifolds and conformal geometry, Math. Ann. 284 (1989), 353-376 Zbl0674.53036MR1001707
  9. C. LeBrun, On complete quaternionic-Kähler manifolds, Duke Math. J. 63 (1991), 723-743 Zbl0764.53045MR1121153
  10. R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, 91 (2002), Math. Surv. Mon. (AMS) Zbl1044.53022MR1867362
  11. S. Salamon, Quaternionic Kähler manifolds, Invent. Math. 67 (1982), 143-171 Zbl0486.53048MR664330
  12. S. Salamon, Almost parallel structures, Global differential geometry: the mathematical legacy of Alfred Gray (2000), 162-181 Zbl1008.53043MR1871007
  13. A. Swann, Aspects symplectiques de la géométrie quaternionique, C. R. Acad. Sci. Paris, Série I 308 (1989), 225-228 Zbl0661.53023MR986384

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.