Some aspects of the homogeneous formalism in field theory and gauge invariance
Marcella Palese; Ekkehart Winterroth
Archivum Mathematicum (2006)
- Volume: 042, Issue: 5, page 319-327
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topPalese, Marcella, and Winterroth, Ekkehart. "Some aspects of the homogeneous formalism in field theory and gauge invariance." Archivum Mathematicum 042.5 (2006): 319-327. <http://eudml.org/doc/249801>.
@article{Palese2006,
abstract = {We propose a suitable formulation of the Hamiltonian formalism for Field Theory in terms of Hamiltonian connections and multisymplectic forms where a composite fibered bundle, involving a line bundle, plays the role of an extended configuration bundle. This new approach can be interpreted as a suitable generalization to Field Theory of the homogeneous formalism for Hamiltonian Mechanics. As an example of application, we obtain the expression of a formal energy for a parametrized version of the Hilbert–Einstein Lagrangian and we show that this quantity is conserved.},
author = {Palese, Marcella, Winterroth, Ekkehart},
journal = {Archivum Mathematicum},
keywords = {jets; connections; homogeneous formalism; Hamilton equations; energy; gravity; jets; connections; homogeneous formalism; Hamilton equations; energy; gravity},
language = {eng},
number = {5},
pages = {319-327},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Some aspects of the homogeneous formalism in field theory and gauge invariance},
url = {http://eudml.org/doc/249801},
volume = {042},
year = {2006},
}
TY - JOUR
AU - Palese, Marcella
AU - Winterroth, Ekkehart
TI - Some aspects of the homogeneous formalism in field theory and gauge invariance
JO - Archivum Mathematicum
PY - 2006
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 042
IS - 5
SP - 319
EP - 327
AB - We propose a suitable formulation of the Hamiltonian formalism for Field Theory in terms of Hamiltonian connections and multisymplectic forms where a composite fibered bundle, involving a line bundle, plays the role of an extended configuration bundle. This new approach can be interpreted as a suitable generalization to Field Theory of the homogeneous formalism for Hamiltonian Mechanics. As an example of application, we obtain the expression of a formal energy for a parametrized version of the Hilbert–Einstein Lagrangian and we show that this quantity is conserved.
LA - eng
KW - jets; connections; homogeneous formalism; Hamilton equations; energy; gravity; jets; connections; homogeneous formalism; Hamilton equations; energy; gravity
UR - http://eudml.org/doc/249801
ER -
References
top- Bureš J., Vanžura J., Unified treatment of multisymplectic 3-forms in dimension 6, preprint arXiv:math.DG/0405101.
- Cabras A., Kolář I., Connections on some functional bundles, Czechoslovak Math. J. 45 (120) (1995), 529–548. (1995) Zbl0851.58007MR1344519
- Crnković C., Witten E., Covariant description of canonical formalism in geometrical theories, Three hundred years of gravitation, Cambridge Univ. Press, Cambridge (1987), 676–684. (1987) Zbl0966.81533MR0920461
- Dedecker P., On the generalization of symplectic geometry to multiple integrals in the calculus of variations, Differential geometrical methods in mathematical physics (Proc. Sympos., Univ. Bonn, Bonn, 1975), Lecture Notes in Math. 570, Springer, Berlin, 1977, 395–456. (1975) MR0458478
- De León M., Marrero J. C., Martin de Diego D., A new geometric setting for classical field theories, Classical and quantum integrability (Warsaw, 2001); Banach Center Publ. 59, Polish Acad. Sci., Warsaw, (2003), 189–209. MR2003724
- Echeverria-Enriquez A., De León M., Munoz-Lecanda M. C., Roman-Roy N., Hamiltonian systems in multisymplectic field theories, preprint arXiv:math-ph/0506003; Zbl1152.81420
- Francaviglia M., Palese M., Winterroth E., A new geometric proposal for the Hamiltonian description of classical field theories, Proc. VIII Int. Conf. Differential Geom. Appl., O. Kowalski et al. eds., 2001 Silesian University in Opava, 415–424. Zbl1109.70310MR1978795
- Francaviglia M., Palese M., Winterroth E., A general geometric setting for the energy of the gravitational field, Inst. Phys. Conf. Ser. 176, I. Ciufolini et al. eds., Taylor & Francis 2005, 391-395.
- Giachetta G., Mangiarotti L., Sardanashvili G., New Lagrangian and Hamiltonian Methods in Field Theory, World Scientific, Singapore, 1997. (1997) MR2001723
- Goldschmidt H., Sternberg S., The Hamilton–Cartan formalism in the calculus of variations, Ann. Inst. Fourier, Grenoble 23 (1) (1973), 203–267. (1973) Zbl0243.49011MR0341531
- Grabowska K., Kijowski J., Canonical gravity and canonical energy, Proc. VIII Int. Conf. Differential Geometry and Appl. (Opava, Czech Republic August 27–31, 2001) O. Kowalski, D. Krupka and J. Slovak eds., 2001 Silesian University in Opava, 261–274. MR1978783
- Hélein F., Kouneiher J., Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage-Dedecker versus De Donder-Weyl, Adv. Theor. Math. Phys. 8 (3) (2004), 565–601. Zbl1115.70017MR2105190
- Hélein F., Kouneiher J., The notion of observable in the covariant Hamiltonian formalism for the calculus of variations with several variables, Adv. Theor. Math. Phys. 8 (4) (2004), 735–777. Zbl1113.70023MR2141500
- Kanatchikov I. V., Canonical structure of classical field theory in the polymomentum phase space, Rep. Math. Phys. 41 (1) (1998), 49–90. (1998) Zbl0947.70020MR1617894
- Kanatchikov I. V., Precanonical quantum gravity: quantization without the space-time decomposition, Internat. J. Theoret. Phys. 40 (6) (2001), 1121–1149. Zbl0984.83026MR1834872
- Kijowski J., A finite-dimensional canonical formalism in the classical field theory, Comm. Math. Phys. 30 (1973), 99–128. (1973) MR0334772
- Kijowski J., Multiphase spaces and gauge in the calculus of variations, Bull. Acad. Polon. Sciences, Math. Astr. Phys. XXII (12) (1974), 1219–1225. (1974) Zbl0302.49024MR0370653
- Kijowski J., Szczyrba W., A canonical structure for classical field theories, Comm. Math. Phys. 46 (2) (1976), 183–206. (1976) Zbl0348.49017MR0406247
- Kijowski J., Tulczyjew W. M., A symplectic framework for field theories, Lecture Notes in Phys. 107, Springer-Verlag, Berlin-New York, 1979. (1979) Zbl0439.58002MR0549772
- Kolář I., A geometrical version of the higher order Hamilton formalism in fibred manifolds, J. Geom. Phys. 1 (2) (1984), 127–137. (1984) MR0794983
- Krupková O., Hamiltonian field theory, J. Geom. Phys. 43 (2002), 93–132. Zbl1016.37033
- Mangiarotti L., Sardanashvily G., Gauge Mechanics, World Scientific, Singapore, 1998. (1998) MR1689375
- Mangiarotti L., Sardanashvily G., Connections in classical and quantum field theory, World Scientific, Singapore, 2000. Zbl1053.53022MR1764255
- Panák M., Vanžura J., 3-forms and almost complex structures on 6-dimensional manifolds, preprint arXiv:math.DG/0305312.
- Rey A. M., Roman-Roy N., Salgado M., Gunther’s formalism -symplectic formalism in classical field theory: Skinner-Rusk approach and the evolution operator, J. Math. Phys. 46 (2005), 052901, 24pp. MR2143001
- Rey A. M., Roman-Roy N., Salgado M., k-cosymplectic formalism in classical field theory: the Skinner–Rusk approach, preprint arXiv:math-ph/0602038.
- Sardanashvily G., Generalized Hamiltonian formalism for field theory. Constraint systems, World Scientific, Singapore, 1995. (1995) MR1376141
- Sardanashvily G., Hamiltonian time–dependent mechanics, J. Math. Phys. 39 (5) (1998), 2714–2729. (1998) Zbl1031.70508MR1621455
- Saunders D. J., The geometry of jet bundles, Cambridge University Press, Cambridge, 1989. (1989) Zbl0665.58002MR0989588
- Winterroth E., A –theory for certain multisymplectic vector bundles, Proc. VIII Int. Conf. Differential Geometry and Appl., O. Kowalski et al. eds., 2001 Silesian University in Opava, 153–162. Zbl1034.55001MR1978772
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.