Some aspects of the homogeneous formalism in field theory and gauge invariance

Marcella Palese; Ekkehart Winterroth

Archivum Mathematicum (2006)

  • Volume: 042, Issue: 5, page 319-327
  • ISSN: 0044-8753

Abstract

top
We propose a suitable formulation of the Hamiltonian formalism for Field Theory in terms of Hamiltonian connections and multisymplectic forms where a composite fibered bundle, involving a line bundle, plays the role of an extended configuration bundle. This new approach can be interpreted as a suitable generalization to Field Theory of the homogeneous formalism for Hamiltonian Mechanics. As an example of application, we obtain the expression of a formal energy for a parametrized version of the Hilbert–Einstein Lagrangian and we show that this quantity is conserved.

How to cite

top

Palese, Marcella, and Winterroth, Ekkehart. "Some aspects of the homogeneous formalism in field theory and gauge invariance." Archivum Mathematicum 042.5 (2006): 319-327. <http://eudml.org/doc/249801>.

@article{Palese2006,
abstract = {We propose a suitable formulation of the Hamiltonian formalism for Field Theory in terms of Hamiltonian connections and multisymplectic forms where a composite fibered bundle, involving a line bundle, plays the role of an extended configuration bundle. This new approach can be interpreted as a suitable generalization to Field Theory of the homogeneous formalism for Hamiltonian Mechanics. As an example of application, we obtain the expression of a formal energy for a parametrized version of the Hilbert–Einstein Lagrangian and we show that this quantity is conserved.},
author = {Palese, Marcella, Winterroth, Ekkehart},
journal = {Archivum Mathematicum},
keywords = {jets; connections; homogeneous formalism; Hamilton equations; energy; gravity; jets; connections; homogeneous formalism; Hamilton equations; energy; gravity},
language = {eng},
number = {5},
pages = {319-327},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Some aspects of the homogeneous formalism in field theory and gauge invariance},
url = {http://eudml.org/doc/249801},
volume = {042},
year = {2006},
}

TY - JOUR
AU - Palese, Marcella
AU - Winterroth, Ekkehart
TI - Some aspects of the homogeneous formalism in field theory and gauge invariance
JO - Archivum Mathematicum
PY - 2006
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 042
IS - 5
SP - 319
EP - 327
AB - We propose a suitable formulation of the Hamiltonian formalism for Field Theory in terms of Hamiltonian connections and multisymplectic forms where a composite fibered bundle, involving a line bundle, plays the role of an extended configuration bundle. This new approach can be interpreted as a suitable generalization to Field Theory of the homogeneous formalism for Hamiltonian Mechanics. As an example of application, we obtain the expression of a formal energy for a parametrized version of the Hilbert–Einstein Lagrangian and we show that this quantity is conserved.
LA - eng
KW - jets; connections; homogeneous formalism; Hamilton equations; energy; gravity; jets; connections; homogeneous formalism; Hamilton equations; energy; gravity
UR - http://eudml.org/doc/249801
ER -

References

top
  1. Bureš J., Vanžura J., Unified treatment of multisymplectic 3-forms in dimension 6, preprint arXiv:math.DG/0405101. 
  2. Cabras A., Kolář I., Connections on some functional bundles, Czechoslovak Math. J. 45 (120) (1995), 529–548. (1995) Zbl0851.58007MR1344519
  3. Crnković C., Witten E., Covariant description of canonical formalism in geometrical theories, Three hundred years of gravitation, Cambridge Univ. Press, Cambridge (1987), 676–684. (1987) Zbl0966.81533MR0920461
  4. Dedecker P., On the generalization of symplectic geometry to multiple integrals in the calculus of variations, Differential geometrical methods in mathematical physics (Proc. Sympos., Univ. Bonn, Bonn, 1975), Lecture Notes in Math. 570, Springer, Berlin, 1977, 395–456. (1975) MR0458478
  5. De León M., Marrero J. C., Martin de Diego D., A new geometric setting for classical field theories, Classical and quantum integrability (Warsaw, 2001); Banach Center Publ. 59, Polish Acad. Sci., Warsaw, (2003), 189–209. MR2003724
  6. Echeverria-Enriquez A., De León M., Munoz-Lecanda M. C., Roman-Roy N., Hamiltonian systems in multisymplectic field theories, preprint arXiv:math-ph/0506003; Zbl1152.81420
  7. Francaviglia M., Palese M., Winterroth E., A new geometric proposal for the Hamiltonian description of classical field theories, Proc. VIII Int. Conf. Differential Geom. Appl., O. Kowalski et al. eds., 2001 Silesian University in Opava, 415–424. Zbl1109.70310MR1978795
  8. Francaviglia M., Palese M., Winterroth E., A general geometric setting for the energy of the gravitational field, Inst. Phys. Conf. Ser. 176, I. Ciufolini et al. eds., Taylor & Francis 2005, 391-395. 
  9. Giachetta G., Mangiarotti L., Sardanashvili G., New Lagrangian and Hamiltonian Methods in Field Theory, World Scientific, Singapore, 1997. (1997) MR2001723
  10. Goldschmidt H., Sternberg S., The Hamilton–Cartan formalism in the calculus of variations, Ann. Inst. Fourier, Grenoble 23 (1) (1973), 203–267. (1973) Zbl0243.49011MR0341531
  11. Grabowska K., Kijowski J., Canonical gravity and canonical energy, Proc. VIII Int. Conf. Differential Geometry and Appl. (Opava, Czech Republic August 27–31, 2001) O. Kowalski, D. Krupka and J. Slovak eds., 2001 Silesian University in Opava, 261–274. MR1978783
  12. Hélein F., Kouneiher J., Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage-Dedecker versus De Donder-Weyl, Adv. Theor. Math. Phys. 8 (3) (2004), 565–601. Zbl1115.70017MR2105190
  13. Hélein F., Kouneiher J., The notion of observable in the covariant Hamiltonian formalism for the calculus of variations with several variables, Adv. Theor. Math. Phys. 8 (4) (2004), 735–777. Zbl1113.70023MR2141500
  14. Kanatchikov I. V., Canonical structure of classical field theory in the polymomentum phase space, Rep. Math. Phys. 41 (1) (1998), 49–90. (1998) Zbl0947.70020MR1617894
  15. Kanatchikov I. V., Precanonical quantum gravity: quantization without the space-time decomposition, Internat. J. Theoret. Phys. 40 (6) (2001), 1121–1149. Zbl0984.83026MR1834872
  16. Kijowski J., A finite-dimensional canonical formalism in the classical field theory, Comm. Math. Phys. 30 (1973), 99–128. (1973) MR0334772
  17. Kijowski J., Multiphase spaces and gauge in the calculus of variations, Bull. Acad. Polon. Sciences, Math. Astr. Phys. XXII (12) (1974), 1219–1225. (1974) Zbl0302.49024MR0370653
  18. Kijowski J., Szczyrba W., A canonical structure for classical field theories, Comm. Math. Phys. 46 (2) (1976), 183–206. (1976) Zbl0348.49017MR0406247
  19. Kijowski J., Tulczyjew W. M., A symplectic framework for field theories, Lecture Notes in Phys. 107, Springer-Verlag, Berlin-New York, 1979. (1979) Zbl0439.58002MR0549772
  20. Kolář I., A geometrical version of the higher order Hamilton formalism in fibred manifolds, J. Geom. Phys. 1 (2) (1984), 127–137. (1984) MR0794983
  21. Krupková O., Hamiltonian field theory, J. Geom. Phys. 43 (2002), 93–132. Zbl1016.37033
  22. Mangiarotti L., Sardanashvily G., Gauge Mechanics, World Scientific, Singapore, 1998. (1998) MR1689375
  23. Mangiarotti L., Sardanashvily G., Connections in classical and quantum field theory, World Scientific, Singapore, 2000. Zbl1053.53022MR1764255
  24. Panák M., Vanžura J., 3-forms and almost complex structures on 6-dimensional manifolds, preprint arXiv:math.DG/0305312. 
  25. Rey A. M., Roman-Roy N., Salgado M., Gunther’s formalism ( k -symplectic formalism ) in classical field theory: Skinner-Rusk approach and the evolution operator, J. Math. Phys. 46 (2005), 052901, 24pp. MR2143001
  26. Rey A. M., Roman-Roy N., Salgado M., k-cosymplectic formalism in classical field theory: the Skinner–Rusk approach, preprint arXiv:math-ph/0602038. 
  27. Sardanashvily G., Generalized Hamiltonian formalism for field theory. Constraint systems, World Scientific, Singapore, 1995. (1995) MR1376141
  28. Sardanashvily G., Hamiltonian time–dependent mechanics, J. Math. Phys. 39 (5) (1998), 2714–2729. (1998) Zbl1031.70508MR1621455
  29. Saunders D. J., The geometry of jet bundles, Cambridge University Press, Cambridge, 1989. (1989) Zbl0665.58002MR0989588
  30. Winterroth E., A K –theory for certain multisymplectic vector bundles, Proc. VIII Int. Conf. Differential Geometry and Appl., O. Kowalski et al. eds., 2001 Silesian University in Opava, 153–162. Zbl1034.55001MR1978772

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.