A brief review of supersymmetric non-linear sigma models and generalized complex geometry
Archivum Mathematicum (2006)
- Volume: 042, Issue: 5, page 307-318
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topLindström, Ulf. "A brief review of supersymmetric non-linear sigma models and generalized complex geometry." Archivum Mathematicum 042.5 (2006): 307-318. <http://eudml.org/doc/249819>.
@article{Lindström2006,
abstract = {This is a review of the relation between supersymmetric non-linear sigma models and target space geometry. In particular, we report on the derivation of generalized Kähler geometry from sigma models with additional spinorial superfields. Some of the results reviewed are: Generalized complex geometry from sigma models in the Lagrangian formulation; Coordinatization of generalized Kähler geometry in terms of chiral, twisted chiral and semi-chiral superfields; Generalized Kähler geometry from sigma models in the Hamiltonian formulation.},
author = {Lindström, Ulf},
journal = {Archivum Mathematicum},
keywords = {sigma model; generalized Kähler geometry; generalized complex geometry; superfield},
language = {eng},
number = {5},
pages = {307-318},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A brief review of supersymmetric non-linear sigma models and generalized complex geometry},
url = {http://eudml.org/doc/249819},
volume = {042},
year = {2006},
}
TY - JOUR
AU - Lindström, Ulf
TI - A brief review of supersymmetric non-linear sigma models and generalized complex geometry
JO - Archivum Mathematicum
PY - 2006
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 042
IS - 5
SP - 307
EP - 318
AB - This is a review of the relation between supersymmetric non-linear sigma models and target space geometry. In particular, we report on the derivation of generalized Kähler geometry from sigma models with additional spinorial superfields. Some of the results reviewed are: Generalized complex geometry from sigma models in the Lagrangian formulation; Coordinatization of generalized Kähler geometry in terms of chiral, twisted chiral and semi-chiral superfields; Generalized Kähler geometry from sigma models in the Hamiltonian formulation.
LA - eng
KW - sigma model; generalized Kähler geometry; generalized complex geometry; superfield
UR - http://eudml.org/doc/249819
ER -
References
top- Albertsson C., Lindström U., Zabzine M., supersymmetric sigma model with boundaries. I, Comm. Math. Phys. 233, 403 (2003) [arXiv:hep-th/0111161]. Zbl1028.81044MR1962116
- Albertsson C., Lindström U., Zabzine M., supersymmetric sigma model with boundaries. II, Nuclear Phys. B 678, 295 (2004) [arXiv:hep-th/0202069]. Zbl1097.81548MR2022994
- Alekseev A., Strobl T., Current algebra and differential geometry, JHEP 0503 (2005), 035 [arXiv:hep-th/0410183]. MR2151966
- Alvarez-Gaumé L., Freedman D. Z., Geometrical structure and ultraviolet finiteness in the supersymmetric sigma model, Comm. Math. Phys. 80, 443 (1981) (1981) MR0626710
- Bergamin L., Generalized complex geometry and the Poisson sigma model, Modern Phys. Lett. A 20, 985 (2005) [arXiv:hep-th/0409283]. Zbl1067.81046MR2148015
- Bredthauer A., Lindström U., Persson J., Zabzine M., Generalized Kaehler geometry from supersymmetric sigma models, arXiv:hep-th/0603130. Zbl1105.53053MR2260375
- Bredthauer A., Lindström U., Persson J., First-order supersymmetric sigma models and target space geometry, JHEP 0601, 144 (2006) [arXiv:hep-th/0508228]. MR2200293
- Buscher T., Lindström U., Roček M., New supersymmetric sigma models with Wess-Zumino terms, Phys. Lett. B202, 94 (1988). (1988) MR0930852
- Calvo I., Supersymmetric WZ-Poisson sigma model and twisted generalized complex geometry, arXiv:hep-th/0511179. Zbl1105.53063MR2247462
- Gates S. J., Hull C. M., Roček M., Twisted multiplets and new supersymmetric nonlinear sigma models, Nuclear Phys. B248 (1984) 157. (1984)
- Grisaru M. T., Massar M., Sevrin A., Troost J., The quantum geometry of non-linear sigma-models, Phys. Lett. B412, 53 (1997) [arXiv:hep-th/9706218]. (1997) MR1603804
- Gualtieri M., Generalized complex geometry, Oxford University DPhil thesis, [arXiv:math. DG/0401221]. Zbl1235.32020MR2811595
- Hitchin N., Generalized Calabi-Yau manifolds, Quart. J. Math. 54, No. 3 (2003), 281–308, [arXiv:math.DG/0209099]. Zbl1076.32019MR2013140
- Hitchin N., Instantons, Poisson structures and generalized Kähler geometry, [arXiv:math. DG/0503432]. Zbl1110.53056MR2217300
- Howe P. S., Sierra G., Two-dimensional supersymmetric nonlinear sigma models with torsion, Phys. Lett. B148, 451 (1984). (1984) MR0769268
- Howe P. S., Lindström U., Wulff L., Superstrings with boundary fermions, JHEP 0508, 041 (2005) [arXiv:hep-th/0505067]. MR2165805
- Howe P. S., Lindström U., Stojevic V., Special holonomy sigma models with boundaries, JHEP 0601, 159 (2006) [arXiv:hep-th/0507035]. MR2200283
- Ivanov I. T., Kim B. B., Roček M., Complex structures, duality and WZW models in extended superspace, Phys. Lett. B343 (1995) 133 [arXiv:hep-th/9406063]. (1995) MR1315282
- Kapustin A., Topological strings on noncommutative manifolds, Int. J. Geom. Methods Mod. Phys. 1 (2004) 49 [arXiv:hep-th/0310057]. Zbl1065.81108MR2055289
- Kapustin A., Li Y., Topological sigma-models with H-flux and twisted generalized complex manifolds, arXiv:hep-th/0407249. Zbl1192.81310MR2322555
- Lindström U., Rocek M., van Nieuwenhuizen P., Consistent boundary conditions for open strings, Nuclear Phys. B 662, 147 (2003) [arXiv:hep-th/0211266]. Zbl1027.83027MR1984375
- Lindström U., Zabzine M., N=2 Boundary conditions for non-linear sigma models and Landau-Ginzburg models, JHEP 0302, 006 (2003) [arXiv:hep-th/0209098]. MR1976901
- Lindström U., Generalized supersymmetric non-linear sigma models, Phys. Lett. B587, 216 (2004) [arXiv:hep-th/0401100]. MR2065031
- Lindström U., Minasian R., Tomasiello A., Zabzine M., Generalized complex manifolds and supersymmetry, Comm. Math. Phys. 257, 235 (2005) [arXiv:hep-th/0405085]. Zbl1118.53048MR2163575
- Lindström U., Roček M., von Unge R., Zabzine M., Generalized Kaehler geometry and manifest supersymmetric nonlinear sigma-models, JHEP 0507 (2005) 067 [arXiv:hep-th/0411186]. MR2163246
- Lindström U., Rocek M., von Unge R., Zabzine M., Generalized Kaehler manifolds and off-shell supersymmetry, arXiv:hep-th/0512164. Zbl1114.81077
- Lyakhovich S., Zabzine M., Poisson geometry of sigma models with extended supersymmetry, Phys. Lett. B548 (2002) 243 [arXiv:hep-th/0210043]. Zbl0999.81044MR1948542
- Pestun V., Topological strings in generalized complex space, arXiv:hep-th/0603145. Zbl1154.81024MR2322532
- Sevrin A., Troost J., Off-shell formulation of non-linear sigma-models, Nuclear Phys. B492 (1997) 623 [arXiv:hep-th/9610102]. (1997) MR1456119
- Zabzine M., Hamiltonian perspective on generalized complex structure, arXiv:hep-th/0502137, to appear in Comm. Math. Phys. Zbl1104.53077MR2211820
- Zucchini R., A sigma model field theoretic realization of Hitchin’s generalized complex geometry, JHEP 0411 (2004) 045 [arXiv:hep-th/0409181]. MR2119918
- Zumino B., Supersymmetry and Kahler manifolds, Phys. Lett. B 87, 203 (1979). (1979)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.