Page 1 Next

Displaying 1 – 20 of 47

Showing per page

A brief review of supersymmetric non-linear sigma models and generalized complex geometry

Ulf Lindström (2006)

Archivum Mathematicum

This is a review of the relation between supersymmetric non-linear sigma models and target space geometry. In particular, we report on the derivation of generalized Kähler geometry from sigma models with additional spinorial superfields. Some of the results reviewed are: Generalized complex geometry from sigma models in the Lagrangian formulation; Coordinatization of generalized Kähler geometry in terms of chiral, twisted chiral and semi-chiral superfields; Generalized Kähler geometry from sigma...

Edge-reinforced random walk, vertex-reinforced jump process and the supersymmetric hyperbolic sigma model

Christophe Sabot, Pierre Tarrès (2015)

Journal of the European Mathematical Society

Edge-reinforced random walk (ERRW), introduced by Coppersmith and Diaconis in 1986 [8], is a random process which takes values in the vertex set of a graph G and is more likely to cross edges it has visited before. We show that it can be represented in terms of a vertex-reinforced jump process (VRJP) with independent gamma conductances; the VRJP was conceived by Werner and first studied by Davis and Volkov [10, 11], and is a continuous-time process favouring sites with more local time. We calculate,...

Ground states of supersymmetric matrix models

Gian Michele Graf (1998/1999)

Séminaire Équations aux dérivées partielles

We consider supersymmetric matrix Hamiltonians. The existence of a zero-energy bound state, in particular for the d = 9 model, is of interest in M-theory. While we do not quite prove its existence, we show that the decay at infinity such a state would have is compatible with normalizability (and hence existence) in d = 9 . Moreover, it would be unique. Other values of d , where the situation is somewhat different, shall also be addressed. The analysis is based on a Born-Oppenheimer approximation. This seminar...

Mathematical structures behind supersymmetric dualities

Ilmar Gahramanov (2015)

Archivum Mathematicum

The purpose of these notes is to give a short survey of an interesting connection between partition functions of supersymmetric gauge theories and hypergeometric functions and to present the recent progress in this direction.

Currently displaying 1 – 20 of 47

Page 1 Next