Geodesic graphs on special 7-dimensional g.o. manifolds
Zdeněk Dušek; Oldřich Kowalski
Archivum Mathematicum (2006)
- Volume: 042, Issue: 5, page 213-227
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topDušek, Zdeněk, and Kowalski, Oldřich. "Geodesic graphs on special 7-dimensional g.o. manifolds." Archivum Mathematicum 042.5 (2006): 213-227. <http://eudml.org/doc/249823>.
@article{Dušek2006,
abstract = {In ( Dušek, Z., Kowalski, O. and Nikčević, S. Ž., New examples of Riemannian g.o. manifolds in dimension 7, Differential Geom. Appl. 21 (2004), 65–78.), the present authors and S. Nikčević constructed the 2-parameter family of invariant Riemannian metrics on the homogeneous manifolds $M=[\{\rm SO\}(5)\times \{\rm SO\}(2)]/\{\rm U\}(2)$ and $M=[\{\rm SO\}(4,1)\times \{\rm SO\}(2)]/\{\rm U\}(2)$. They proved that, for the open dense subset of this family, the corresponding Riemannian manifolds are g.o. manifolds which are not naturally reductive. Now we are going to investigate the remaining metrics (in the compact case).},
author = {Dušek, Zdeněk, Kowalski, Oldřich},
journal = {Archivum Mathematicum},
keywords = {naturally reductive spaces; Riemannian g.o. spaces; geodesic graph; naturally reductive spaces; Riemannian g.o. spaces; geodesic graph},
language = {eng},
number = {5},
pages = {213-227},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Geodesic graphs on special 7-dimensional g.o. manifolds},
url = {http://eudml.org/doc/249823},
volume = {042},
year = {2006},
}
TY - JOUR
AU - Dušek, Zdeněk
AU - Kowalski, Oldřich
TI - Geodesic graphs on special 7-dimensional g.o. manifolds
JO - Archivum Mathematicum
PY - 2006
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 042
IS - 5
SP - 213
EP - 227
AB - In ( Dušek, Z., Kowalski, O. and Nikčević, S. Ž., New examples of Riemannian g.o. manifolds in dimension 7, Differential Geom. Appl. 21 (2004), 65–78.), the present authors and S. Nikčević constructed the 2-parameter family of invariant Riemannian metrics on the homogeneous manifolds $M=[{\rm SO}(5)\times {\rm SO}(2)]/{\rm U}(2)$ and $M=[{\rm SO}(4,1)\times {\rm SO}(2)]/{\rm U}(2)$. They proved that, for the open dense subset of this family, the corresponding Riemannian manifolds are g.o. manifolds which are not naturally reductive. Now we are going to investigate the remaining metrics (in the compact case).
LA - eng
KW - naturally reductive spaces; Riemannian g.o. spaces; geodesic graph; naturally reductive spaces; Riemannian g.o. spaces; geodesic graph
UR - http://eudml.org/doc/249823
ER -
References
top- Dušek Z., Explicit geodesic graphs on some H-type groups, Rend. Circ. Mat. Palermo, Serie II, Suppl. 69 (2002), 77–88. Zbl1025.53019MR1972426
- Dušek Z., and Kowalski O., Geodesic graphs on the 13-dimensional group of Heisenberg type, Math. Nachr., 254-255 (2003), 87–96. MR1983957
- Dušek Z., Kowalski O., Nikčević S. Ž., New examples of Riemannian g.o. manifolds in dimension 7, Differential Geom. Appl. 21 (2004), 65–78. Zbl1050.22011MR2067459
- Kobayashi S., and Nomizu N., Foundations of differential geometry - I, Interscience Publishers, New York, 1963. (1963)
- Kobayashi S., and Nomizu N., Foundations of differential geometry - II, Interscience Publishers, New York, 1969. (1969)
- Kowalski O., and Nikčević S. Ž., On geodesic graphs of Riemannian g.o. spaces, Arch. Math. 73 (1999), 223–234. (1999) MR1705019
- Kowalski O., and Nikčević S. Ž., On geodesic graphs of Riemannian g.o. spaces - Appendix, Arch. Math. 79 (2002), 158–160. MR1924152
- Kowalski O., and Vanhecke L., Riemannian manifolds with homogeneous geodesics, Boll. Un. Math. Ital. B(7)5 (1991), 189–246. (1991) MR1110676
- Szenthe J., Sur la connection naturelle à torsion nulle, Acta Sci. Math. (Szeged) 38 (1976), 383–398. (1976) MR0431042
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.