On generalized “ham sandwich” theorems
Archivum Mathematicum (2006)
- Volume: 042, Issue: 1, page 25-30
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topGolasiński, Marek. "On generalized “ham sandwich” theorems." Archivum Mathematicum 042.1 (2006): 25-30. <http://eudml.org/doc/249826>.
@article{Golasiński2006,
abstract = {In this short note we utilize the Borsuk-Ulam Anitpodal Theorem to present a simple proof of the following generalization of the “Ham Sandwich Theorem”: Let $A_1,\ldots ,A_m\subseteq \mathbb \{R\}^n$ be subsets with finite Lebesgue measure. Then, for any sequence $f_0,\ldots ,f_m$ of $\mathbb \{R\}$-linearly independent polynomials in the polynomial ring $\mathbb \{R\}[X_1,\ldots ,X_n]$ there are real numbers $\lambda _0,\ldots ,\lambda _m$, not all zero, such that the real affine variety $\lbrace x\in \mathbb \{R\}^n;\,\lambda _0f_0(x)+\cdots +\lambda _mf_m(x)=0 \rbrace $ simultaneously bisects each of subsets $A_k$, $k=1,\ldots ,m$. Then some its applications are studied.},
author = {Golasiński, Marek},
journal = {Archivum Mathematicum},
keywords = {Lebesgue (signed) measure; polynomial; random vector; real affine variety; Lebesgue (signed) measure; polynomial; random vector; real affine variety},
language = {eng},
number = {1},
pages = {25-30},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On generalized “ham sandwich” theorems},
url = {http://eudml.org/doc/249826},
volume = {042},
year = {2006},
}
TY - JOUR
AU - Golasiński, Marek
TI - On generalized “ham sandwich” theorems
JO - Archivum Mathematicum
PY - 2006
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 042
IS - 1
SP - 25
EP - 30
AB - In this short note we utilize the Borsuk-Ulam Anitpodal Theorem to present a simple proof of the following generalization of the “Ham Sandwich Theorem”: Let $A_1,\ldots ,A_m\subseteq \mathbb {R}^n$ be subsets with finite Lebesgue measure. Then, for any sequence $f_0,\ldots ,f_m$ of $\mathbb {R}$-linearly independent polynomials in the polynomial ring $\mathbb {R}[X_1,\ldots ,X_n]$ there are real numbers $\lambda _0,\ldots ,\lambda _m$, not all zero, such that the real affine variety $\lbrace x\in \mathbb {R}^n;\,\lambda _0f_0(x)+\cdots +\lambda _mf_m(x)=0 \rbrace $ simultaneously bisects each of subsets $A_k$, $k=1,\ldots ,m$. Then some its applications are studied.
LA - eng
KW - Lebesgue (signed) measure; polynomial; random vector; real affine variety; Lebesgue (signed) measure; polynomial; random vector; real affine variety
UR - http://eudml.org/doc/249826
ER -
References
top- Arens R., On sandwich slicing, Topology (Proc. Fourth Colloq., Budapest, 1978), vol. I, 57–60, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam, 1980. (1978) MR0588764
- Borsuk K., Drei Sätze über die -dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177–190. (1933) Zbl0006.42403
- Dugundij J., Granas A., Fixed point theory, Vol.I, Monografie Matematyczne 61, PWN, Warsaw 1982. (1982)
- Gray B., Homotopy theory, New York, San Francisco, London 1975. (1975) Zbl0322.55001MR0402714
- Halmos P. R., Measure theory, Toronto, New York, London 1950. (1950) Zbl0040.16802MR0033869
- Hill T., Hyperplane medians for random vectors, Amer. Math. Monthly 95 (5) (1988), 437–441. (1988) Zbl0643.60011MR0937533
- Hobby C. R., Rice J. R., A moment problem in -approximation, Proc. Amer. Math. Soc. 16 (1965), 665–670. (1965) MR0178292
- Pinkus A., A simple proof of the Hobby-Rice theorem, Proc. Amer. Math. Soc. 60 (1976), 82–84. (1976) MR0425470
- Peters J. V., The ham sandwich theorem for some related results, Rocky Mountain J. Math. 11 (3) (1981), 473–482. (1981) MR0722580
- Steinhaus H., Sur la division des ensembles de l’espace par les plans et des ensembles plans par les cercles, Fund. Math. 33 (1945), 245–263. (1945) Zbl0061.38404MR0017514
- Steinhaus H., Kalejdoskop matematyczny, PWN, Warszawa (1956). (1956)
- Steinlein H., Spheres and symmetry, Borsuk’s antipodal theorem, Topol. Methods Nonlinear Anal. 1 (1993), 15–33. (1993) Zbl0795.55004MR1215255
- Stone A., Tukey J. W., Generalized “sandwich” theorems, Duke Math. J. 9 (1942), 356–359. (1942) Zbl0061.38405MR0007036
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.