On generalized “ham sandwich” theorems

Marek Golasiński

Archivum Mathematicum (2006)

  • Volume: 042, Issue: 1, page 25-30
  • ISSN: 0044-8753

Abstract

top
In this short note we utilize the Borsuk-Ulam Anitpodal Theorem to present a simple proof of the following generalization of the “Ham Sandwich Theorem”: Let A 1 , ... , A m n be subsets with finite Lebesgue measure. Then, for any sequence f 0 , ... , f m of -linearly independent polynomials in the polynomial ring [ X 1 , ... , X n ] there are real numbers λ 0 , ... , λ m , not all zero, such that the real affine variety { x n ; λ 0 f 0 ( x ) + + λ m f m ( x ) = 0 } simultaneously bisects each of subsets A k , k = 1 , ... , m . Then some its applications are studied.

How to cite

top

Golasiński, Marek. "On generalized “ham sandwich” theorems." Archivum Mathematicum 042.1 (2006): 25-30. <http://eudml.org/doc/249826>.

@article{Golasiński2006,
abstract = {In this short note we utilize the Borsuk-Ulam Anitpodal Theorem to present a simple proof of the following generalization of the “Ham Sandwich Theorem”: Let $A_1,\ldots ,A_m\subseteq \mathbb \{R\}^n$ be subsets with finite Lebesgue measure. Then, for any sequence $f_0,\ldots ,f_m$ of $\mathbb \{R\}$-linearly independent polynomials in the polynomial ring $\mathbb \{R\}[X_1,\ldots ,X_n]$ there are real numbers $\lambda _0,\ldots ,\lambda _m$, not all zero, such that the real affine variety $\lbrace x\in \mathbb \{R\}^n;\,\lambda _0f_0(x)+\cdots +\lambda _mf_m(x)=0 \rbrace $ simultaneously bisects each of subsets $A_k$, $k=1,\ldots ,m$. Then some its applications are studied.},
author = {Golasiński, Marek},
journal = {Archivum Mathematicum},
keywords = {Lebesgue (signed) measure; polynomial; random vector; real affine variety; Lebesgue (signed) measure; polynomial; random vector; real affine variety},
language = {eng},
number = {1},
pages = {25-30},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On generalized “ham sandwich” theorems},
url = {http://eudml.org/doc/249826},
volume = {042},
year = {2006},
}

TY - JOUR
AU - Golasiński, Marek
TI - On generalized “ham sandwich” theorems
JO - Archivum Mathematicum
PY - 2006
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 042
IS - 1
SP - 25
EP - 30
AB - In this short note we utilize the Borsuk-Ulam Anitpodal Theorem to present a simple proof of the following generalization of the “Ham Sandwich Theorem”: Let $A_1,\ldots ,A_m\subseteq \mathbb {R}^n$ be subsets with finite Lebesgue measure. Then, for any sequence $f_0,\ldots ,f_m$ of $\mathbb {R}$-linearly independent polynomials in the polynomial ring $\mathbb {R}[X_1,\ldots ,X_n]$ there are real numbers $\lambda _0,\ldots ,\lambda _m$, not all zero, such that the real affine variety $\lbrace x\in \mathbb {R}^n;\,\lambda _0f_0(x)+\cdots +\lambda _mf_m(x)=0 \rbrace $ simultaneously bisects each of subsets $A_k$, $k=1,\ldots ,m$. Then some its applications are studied.
LA - eng
KW - Lebesgue (signed) measure; polynomial; random vector; real affine variety; Lebesgue (signed) measure; polynomial; random vector; real affine variety
UR - http://eudml.org/doc/249826
ER -

References

top
  1. Arens R., On sandwich slicing, Topology (Proc. Fourth Colloq., Budapest, 1978), vol. I, 57–60, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam, 1980. (1978) MR0588764
  2. Borsuk K., Drei Sätze über die n -dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177–190. (1933) Zbl0006.42403
  3. Dugundij J., Granas A., Fixed point theory, Vol.I, Monografie Matematyczne 61, PWN, Warsaw 1982. (1982) 
  4. Gray B., Homotopy theory, New York, San Francisco, London 1975. (1975) Zbl0322.55001MR0402714
  5. Halmos P. R., Measure theory, Toronto, New York, London 1950. (1950) Zbl0040.16802MR0033869
  6. Hill T., Hyperplane medians for random vectors, Amer. Math. Monthly 95 (5) (1988), 437–441. (1988) Zbl0643.60011MR0937533
  7. Hobby C. R., Rice J. R., A moment problem in L 1 -approximation, Proc. Amer. Math. Soc. 16 (1965), 665–670. (1965) MR0178292
  8. Pinkus A., A simple proof of the Hobby-Rice theorem, Proc. Amer. Math. Soc. 60 (1976), 82–84. (1976) MR0425470
  9. Peters J. V., The ham sandwich theorem for some related results, Rocky Mountain J. Math. 11 (3) (1981), 473–482. (1981) MR0722580
  10. Steinhaus H., Sur la division des ensembles de l’espace par les plans et des ensembles plans par les cercles, Fund. Math. 33 (1945), 245–263. (1945) Zbl0061.38404MR0017514
  11. Steinhaus H., Kalejdoskop matematyczny, PWN, Warszawa (1956). (1956) 
  12. Steinlein H., Spheres and symmetry, Borsuk’s antipodal theorem, Topol. Methods Nonlinear Anal. 1 (1993), 15–33. (1993) Zbl0795.55004MR1215255
  13. Stone A., Tukey J. W., Generalized “sandwich” theorems, Duke Math. J. 9 (1942), 356–359. (1942) Zbl0061.38405MR0007036

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.