# Spaces of continuous functions, $\Sigma $-products and Box Topology

J. Angoa; Angel Tamariz-Mascarúa

Commentationes Mathematicae Universitatis Carolinae (2006)

- Volume: 47, Issue: 1, page 69-94
- ISSN: 0010-2628

## Access Full Article

top## Abstract

top## How to cite

topAngoa, J., and Tamariz-Mascarúa, Angel. "Spaces of continuous functions, $\Sigma $-products and Box Topology." Commentationes Mathematicae Universitatis Carolinae 47.1 (2006): 69-94. <http://eudml.org/doc/249848>.

@article{Angoa2006,

abstract = {For a Tychonoff space $X$, we will denote by $X_0$ the set of its isolated points and $X_\{1\}$ will be equal to $X\setminus X_\{0\}$. The symbol $C(X)$ denotes the space of real-valued continuous functions defined on $X$. $\square \mathbb \{R\}^\{\kappa \}$ is the Cartesian product $\mathbb \{R\}^\{\kappa \}$ with its box topology, and $C_\{\square \}(X)$ is $C(X)$ with the topology inherited from $\square \mathbb \{R\}^\{X\}$. By $\widehat\{C\}(X_1)$ we denote the set $\lbrace f\in C(X_1) : f$ can be continuously extended to all of $X\rbrace $. A space $X$ is almost-$\omega $-resolvable if it can be partitioned by a countable family of subsets in such a way that every non-empty open subset of $X$ has a non-empty intersection with the elements of an infinite subcollection of the given partition. We analyze $C_\square (X)$ when $X_0$ is $F_\sigma $ and prove: (1) for every topological space $X$, if $X_\{0\}$ is $F_\{\sigma \}$ in $X$, and $\emptyset \ne X_\{1\}\subset \operatorname\{cl\}_\{X\}X_\{0\}$, then $C_\{\square \}(X)\cong \square \mathbb \{R\}^\{X_\{0\}\}$; (2) for every space $X$ such that $X_\{0\}$ is $F_\{\sigma \}$, $\operatorname\{cl\}_\{X\}X_\{0\}\cap X_\{1\}\ne \emptyset $, and $X_1 \setminus \operatorname\{cl\}_X X_0$ is almost-$\omega $-resolvable, then $C_\{\square \}(X)$ is homeomorphic to a free topological sum of $\le |\widehat\{C\}(X_1)|$ copies of $\square \mathbb \{R\}^\{X_\{0\}\}$, and, in this case, $C_\{\square \}(X) \cong \square \mathbb \{R\}^\{X_\{0\}\}$ if and only if $|\widehat\{C\}(X_1)|\le 2^\{|X_\{0\}|\}$. We conclude that for a space $X$ such that $X_0$ is $F_\sigma $, $C_\square (X)$ is never normal if $|X_0| >\aleph _0$ [La], and, assuming CH, $C_\square (X)$ is paracompact if $|X_0| = \aleph _0$ [Ru2]. We also analyze $C_\square (X)$ when $|X_1| = 1$ and when $X$ is countably compact, and we scrutinize under what conditions $\square \mathbb \{R\}^\kappa $ is homeomorphic to some of its “$\Sigma $-products"; in particular, we prove that $\square \mathbb \{R\}^\omega $ is homeomorphic to each of its subspaces $\lbrace f \in \square \mathbb \{R\}^\omega : \lbrace n\in \omega : f(n) = 0\rbrace \in p\rbrace $ for every $p \in \omega ^*$, and it is homeomorphic to $\lbrace f \in \square \mathbb \{R\}^\omega : \,\, \forall \,\, \epsilon > 0 \,\, \lbrace n\in \omega : |f(n)| < \epsilon \rbrace \in \{\mathcal \{F\}\}_0\rbrace $ where $\mathcal \{F\}_0$ is the Fréchet filter on $\omega $.},

author = {Angoa, J., Tamariz-Mascarúa, Angel},

journal = {Commentationes Mathematicae Universitatis Carolinae},

keywords = {spaces of real-valued continuous functions; box topology; $\Sigma $-product; almost-$\omega $-resolvable space; spaces of real-valued continuous functions; -product; almost--resolvable space},

language = {eng},

number = {1},

pages = {69-94},

publisher = {Charles University in Prague, Faculty of Mathematics and Physics},

title = {Spaces of continuous functions, $\Sigma $-products and Box Topology},

url = {http://eudml.org/doc/249848},

volume = {47},

year = {2006},

}

TY - JOUR

AU - Angoa, J.

AU - Tamariz-Mascarúa, Angel

TI - Spaces of continuous functions, $\Sigma $-products and Box Topology

JO - Commentationes Mathematicae Universitatis Carolinae

PY - 2006

PB - Charles University in Prague, Faculty of Mathematics and Physics

VL - 47

IS - 1

SP - 69

EP - 94

AB - For a Tychonoff space $X$, we will denote by $X_0$ the set of its isolated points and $X_{1}$ will be equal to $X\setminus X_{0}$. The symbol $C(X)$ denotes the space of real-valued continuous functions defined on $X$. $\square \mathbb {R}^{\kappa }$ is the Cartesian product $\mathbb {R}^{\kappa }$ with its box topology, and $C_{\square }(X)$ is $C(X)$ with the topology inherited from $\square \mathbb {R}^{X}$. By $\widehat{C}(X_1)$ we denote the set $\lbrace f\in C(X_1) : f$ can be continuously extended to all of $X\rbrace $. A space $X$ is almost-$\omega $-resolvable if it can be partitioned by a countable family of subsets in such a way that every non-empty open subset of $X$ has a non-empty intersection with the elements of an infinite subcollection of the given partition. We analyze $C_\square (X)$ when $X_0$ is $F_\sigma $ and prove: (1) for every topological space $X$, if $X_{0}$ is $F_{\sigma }$ in $X$, and $\emptyset \ne X_{1}\subset \operatorname{cl}_{X}X_{0}$, then $C_{\square }(X)\cong \square \mathbb {R}^{X_{0}}$; (2) for every space $X$ such that $X_{0}$ is $F_{\sigma }$, $\operatorname{cl}_{X}X_{0}\cap X_{1}\ne \emptyset $, and $X_1 \setminus \operatorname{cl}_X X_0$ is almost-$\omega $-resolvable, then $C_{\square }(X)$ is homeomorphic to a free topological sum of $\le |\widehat{C}(X_1)|$ copies of $\square \mathbb {R}^{X_{0}}$, and, in this case, $C_{\square }(X) \cong \square \mathbb {R}^{X_{0}}$ if and only if $|\widehat{C}(X_1)|\le 2^{|X_{0}|}$. We conclude that for a space $X$ such that $X_0$ is $F_\sigma $, $C_\square (X)$ is never normal if $|X_0| >\aleph _0$ [La], and, assuming CH, $C_\square (X)$ is paracompact if $|X_0| = \aleph _0$ [Ru2]. We also analyze $C_\square (X)$ when $|X_1| = 1$ and when $X$ is countably compact, and we scrutinize under what conditions $\square \mathbb {R}^\kappa $ is homeomorphic to some of its “$\Sigma $-products"; in particular, we prove that $\square \mathbb {R}^\omega $ is homeomorphic to each of its subspaces $\lbrace f \in \square \mathbb {R}^\omega : \lbrace n\in \omega : f(n) = 0\rbrace \in p\rbrace $ for every $p \in \omega ^*$, and it is homeomorphic to $\lbrace f \in \square \mathbb {R}^\omega : \,\, \forall \,\, \epsilon > 0 \,\, \lbrace n\in \omega : |f(n)| < \epsilon \rbrace \in {\mathcal {F}}_0\rbrace $ where $\mathcal {F}_0$ is the Fréchet filter on $\omega $.

LA - eng

KW - spaces of real-valued continuous functions; box topology; $\Sigma $-product; almost-$\omega $-resolvable space; spaces of real-valued continuous functions; -product; almost--resolvable space

UR - http://eudml.org/doc/249848

ER -

## References

top- Arkhangel'skii A.V., Topological Function Spaces, Mathematics and its Applications, vol. 78, Kluwer Academic Publishers Dordrecht, Boston, London (1992). (1992) MR1144519
- Beckenstein E., Narici L., Suffel C., Topological Algebras, North Holland Mathematics Studies, vol. 24, North Holland Amsterdam, New York, Oxford (1977). (1977) Zbl0348.46041MR0473835
- Comfort W.W., Hager W., Estimates for the number of real-valued continuous functions, Trans. Amer. Math. Soc. 150 (1970), 619-631. (1970) Zbl0199.57504MR0263016
- Di Malo G., Holá L'., Recent Progress in Function Spaces, Seconda Università degli Studi di Napoli, Quaderni di Matematica 3 (1998). (1998) MR1762348
- van Douwen E.K., The box product of countably many metrizable spaces need not be normal, Fund. Math. 88 (1975), 127-132. (1975) MR0385781
- Engelking R., General Topology, Heldermann Verlag Berlin (1989). (1989) Zbl0684.54001MR1039321
- Gillman L., Jerison M., Rings of Continuous Functions, Graduate Texts in Mathematics, Springer New York, Heidelberg, Berlin (1976). (1976) Zbl0327.46040MR0407579
- Hodel R., Cardinal Functions I, Handbook of Set Theoretic Topology, (K. Kunen, J. Vaughan, Eds.), North Holland Amsterdam, New York, Oxford, Tokyo (1984, pp.1-61). (1984, pp.1-61) MR0776620
- Knight C.J., Box topologies, Quart. J. Math. 15 (1964), 41-54. (1964) Zbl0122.17404MR0160184
- Kunen K., On paracompactness of box products of compact spaces, Trans. Amer. Math. Soc. 240 (1978), 307-316. (1978) MR0514975
- Kunen K., Szymansky A., Tall F., Baire irresolvable spaces and ideal theory, Ann. Math. Silesiana 14 (1986), 98-107. (1986) MR0861505
- Lawrence L.B., Failure of normality in the box product of uncountably many real lines, Trans. Amer. Math. Soc. 348 (1996), 187-203. (1996) Zbl0864.54017MR1303123
- Nyikos P., Piatkiewicz L., Paracompact subspaces in the Box product Topology, Proc. Amer. Math. Soc. 124 (1996), 303-314. (1996) MR1327033
- Rudin M.E., A normal space $X$ for which $X\times I$ is not normal, Fund. Math. 73 (1971), 179-186. (1971) Zbl0224.54019MR0293583
- Rudin M.E., The box product of countably many compact metric spaces, General Topology Appl. 2 (1972), 293-298. (1972) Zbl0243.54015MR0324619
- Rudin M.E., Lectures on set theoretic topology, Conference Board of the Mathematical Sciencie, Amer. Math. Soc. (1975). (1975) Zbl0318.54001MR0367886
- Tamariz-Mascarúa A., Villegas-Rodríguez H., Spaces of continuous functions, box products and almost-$\xf8mega$-resolvable spaces, Comment. Math. Univ. Carolinae 43 2 (2002), 687-705. (2002) Zbl1090.54011MR2045790
- Tietze H., Beitrage zur allgemeinen Topologie I, Math. Ann. 88 (1923), 280-312. (1923) MR1512131
- Vaughan J.E., Non-normal products of $\xf8meg{a}_{\mu}$metrizable spaces, Proc. Amer. Math. Soc. 51 (1975), 203-208. (1975) MR0370464
- Williams S.W., Box products, Handbook of Set-Theoretic Topology (K. Kunen, J. Vaughan, Eds.), North Holland Amsterdam, New York, Oxford, Tokyo (1984), 169-200. (1984) Zbl0568.54011MR0776623

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.