On sequent calculi for intuitionistic propositional logic
Commentationes Mathematicae Universitatis Carolinae (2006)
- Volume: 47, Issue: 1, page 159-173
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topŠvejdar, Vítězslav. "On sequent calculi for intuitionistic propositional logic." Commentationes Mathematicae Universitatis Carolinae 47.1 (2006): 159-173. <http://eudml.org/doc/249855>.
@article{Švejdar2006,
abstract = {The well-known Dyckoff's 1992 calculus/procedure for intuitionistic propositional logic is considered and analyzed. It is shown that the calculus is Kripke complete and the procedure in fact works in polynomial space. Then a multi-conclusion intuitionistic calculus is introduced, obtained by adding one new rule to known calculi. A simple proof of Kripke completeness and polynomial-space decidability of this calculus is given. An upper bound on the depth of a Kripke counter-model is obtained.},
author = {Švejdar, Vítězslav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {intuitionistic logic; polynomial-space; sequent calculus; Kripke semantics; Kripke semantics; completeness; polynomial-space complexity},
language = {eng},
number = {1},
pages = {159-173},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On sequent calculi for intuitionistic propositional logic},
url = {http://eudml.org/doc/249855},
volume = {47},
year = {2006},
}
TY - JOUR
AU - Švejdar, Vítězslav
TI - On sequent calculi for intuitionistic propositional logic
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 1
SP - 159
EP - 173
AB - The well-known Dyckoff's 1992 calculus/procedure for intuitionistic propositional logic is considered and analyzed. It is shown that the calculus is Kripke complete and the procedure in fact works in polynomial space. Then a multi-conclusion intuitionistic calculus is introduced, obtained by adding one new rule to known calculi. A simple proof of Kripke completeness and polynomial-space decidability of this calculus is given. An upper bound on the depth of a Kripke counter-model is obtained.
LA - eng
KW - intuitionistic logic; polynomial-space; sequent calculus; Kripke semantics; Kripke semantics; completeness; polynomial-space complexity
UR - http://eudml.org/doc/249855
ER -
References
top- Buss S., Pudlák P., On the computational content of intuitionistic propositional proofs, Ann. Pure Appl. Logic 109 49-64 (2001). (2001) Zbl1009.03027MR1835237
- van Dalen D., Intuitionistic logic, in: Handbook of Philosophical Logic, D. Gabbay and F. Guenthner, Eds., no. 164-167 in Synthese Library, Chapter III.4, pp.225-340, Kluwer, Dordrecht, 1986. Zbl1002.03053
- Dershowitz N., Manna Z., Proving termination with multiset orderings, Comm. ACM 22 465-476 (1979). (1979) Zbl0431.68016MR0540043
- Dyckhoff R., Contraction-free sequent calculi for intuitionistic logic, J. Symbolic Logic 57 795-807 (1992). (1992) Zbl0761.03004MR1187448
- Hudelmaier J., An -space decision procedure for intuitionistic propositional logic, J. Logic Comput. 3 1 63-75 (1993). (1993) Zbl0788.03010MR1240404
- Kleene S.C., Introduction to Metamathematics, D. van Nostrand, New York, 1952. Zbl0875.03002MR0051790
- Ladner R., The computational complexity of provability in systems of modal logic, SIAM J. Comput. 6 3 467-480 (1977). (1977) MR0450027
- Papadimitriou C.H., Computational Complexity, Addison-Wesley, Reading, MA, 1994. Zbl0833.68049MR1251285
- Statman R., Intuitionistic propositional logic is polynomial-space complete, Theoretical Comput. Sci. 9 67-72 (1979). (1979) Zbl0411.03049MR0535124
- Švejdar V., On the polynomial-space completeness of intuitionistic propositional logic, Arch. Math. Logic 42 7 (2003), 711-716; {http://dx.doi.org/10.1007/s00153-003-0179-x}. (2003) Zbl1025.03030MR2015096
- Takeuti G., Proof Theory, North-Holland, Amsterdam, 1975. Zbl0681.03039MR0882549
- Troelstra A.S., Schwichtenberg H., Basic Proof Theory, Cambridge University Press, Cambridge, 1996. Zbl0957.03053MR1409368
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.