Retral spaces and continua with the fixed point property
Commentationes Mathematicae Universitatis Carolinae (2006)
- Volume: 47, Issue: 4, page 661-668
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topvan Mill, Jan, and Ridderbos, G. J.. "Retral spaces and continua with the fixed point property." Commentationes Mathematicae Universitatis Carolinae 47.4 (2006): 661-668. <http://eudml.org/doc/249862>.
@article{vanMill2006,
abstract = {We show that every retral continuum with the fixed point property is locally connected. It follows that an indecomposable continuum with the fixed point property is not a retract of a topological group.},
author = {van Mill, Jan, Ridderbos, G. J.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {retraction; homogeneous space; topological groups; coset space; retraction; homogeneous space; topological groups; coset space},
language = {eng},
number = {4},
pages = {661-668},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Retral spaces and continua with the fixed point property},
url = {http://eudml.org/doc/249862},
volume = {47},
year = {2006},
}
TY - JOUR
AU - van Mill, Jan
AU - Ridderbos, G. J.
TI - Retral spaces and continua with the fixed point property
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 4
SP - 661
EP - 668
AB - We show that every retral continuum with the fixed point property is locally connected. It follows that an indecomposable continuum with the fixed point property is not a retract of a topological group.
LA - eng
KW - retraction; homogeneous space; topological groups; coset space; retraction; homogeneous space; topological groups; coset space
UR - http://eudml.org/doc/249862
ER -
References
top- Arhangel'skiĭ A.V., Cell structures and homogeneity, Mat. Zametki 37 (1985), 4 580-586, 602. (1985) MR0790982
- Bing R.H., A homogeneous indecomposable plane continuum, Duke Math. J. 15 (1948), 729-742. (1948) Zbl0035.39103MR0027144
- Bing R.H., Concerning hereditarily indecomposable continua, Pacific J. Math. 1 (1951), 43-51. (1951) Zbl0043.16803MR0043451
- Cauty R., Espaces de Maltsev compacts qui ne sont pas des rétractes de groupes compacts, Bull. Polish Acad. Sci. Math. 46 (1998), 1 67-70. (1998) Zbl0893.22002MR1619403
- Ford L.R., Jr., Homeomorphism groups and coset spaces, Trans. Amer. Math. Soc. 77 (1954), 490-497. (1954) Zbl0058.17302MR0066636
- Gartside P.M., Reznichenko E.A., Sipacheva O.V., Mal'tsev and retral spaces, Topology Appl. 80 (1997), 1-2 115-129. (1997) Zbl0888.54037MR1469472
- Mal'tsev A.I., On the general theory of algebraic systems, Mat. Sb. N.S. 35(77) (1954), 3-20. (1954) Zbl0128.02301MR0065533
- van Mill J., The Infinite-Dimensional Topology of Function Spaces, North-Holland Mathematical Library, vol. 64, North-Holland, Amsterdam, 2001. Zbl0969.54003MR1851014
- van Mill J., A note on Ford's example, Topology Proc. 28 (2004), 2 689-694. (2004) Zbl1088.54015MR2159753
- van Mill J., Ridderbos G.J., Notes on retracts of coset spaces, Bull. Polish Acad. Sci. Math. 53 (2005), 169-179. (2005) Zbl1129.54011MR2163392
- Reznichenko E.A., Uspenskiĭ V.V., Pseudocompact Mal'tsev spaces, Topology Appl. 86 (1998), 1 83-104, Special issue on topological groups. (1998) MR1619345
- Sipacheva O.V., Compacta with a continuous Mal'tsev operation and retracts of topological groups, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1991), 1 33-36, 104. (1991) MR1096268
- Ungar G.S., On all kinds of homogeneous spaces, Trans. Amer. Math. Soc. 212 (1975), 393-400. (1975) Zbl0318.54037MR0385825
- Uspenskiĭ V.V., For any , the product is homogeneous for some , Proc. Amer. Math. Soc. 87 (1983), 1 187-188. (1983) MR0677259
- Uspenskiĭ V.V., Continuous images of Lindelöf topological groups, Dokl. Akad. Nauk SSSR 285 (1985), 4 824-827. (1985) MR0821360
- Uspenskiĭ V.V., The Mal'tsev operation on countably compact spaces, Comment. Math. Univ. Carolin. 30 (1989), 2 395-402. (1989) MR1014140
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.