-products of paracompact Čech-scattered spaces
Commentationes Mathematicae Universitatis Carolinae (2006)
- Volume: 47, Issue: 1, page 127-140
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topTanaka, Hidenori. "$\Sigma $-products of paracompact Čech-scattered spaces." Commentationes Mathematicae Universitatis Carolinae 47.1 (2006): 127-140. <http://eudml.org/doc/249871>.
@article{Tanaka2006,
abstract = {In this paper, we shall discuss $\Sigma $-products of paracompact Čech-scattered spaces and show the following: (1) Let $\Sigma $ be a $\Sigma $-product of paracompact Čech-scattered spaces. If $\Sigma $ has countable tightness, then it is collectionwise normal. (2) If $\Sigma $ is a $\Sigma $-product of first countable, paracompact (subparacompact) Čech-scattered spaces, then it is shrinking (subshrinking).},
author = {Tanaka, Hidenori},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$\Sigma $-product; C-scattered; Čech-scattered; paracompact; subparacompact; collectionwise normal; shrinking; subshrinking; countable tightness; -product; collectionwise normality; shrinking; paracompact; scattered},
language = {eng},
number = {1},
pages = {127-140},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$\Sigma $-products of paracompact Čech-scattered spaces},
url = {http://eudml.org/doc/249871},
volume = {47},
year = {2006},
}
TY - JOUR
AU - Tanaka, Hidenori
TI - $\Sigma $-products of paracompact Čech-scattered spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 1
SP - 127
EP - 140
AB - In this paper, we shall discuss $\Sigma $-products of paracompact Čech-scattered spaces and show the following: (1) Let $\Sigma $ be a $\Sigma $-product of paracompact Čech-scattered spaces. If $\Sigma $ has countable tightness, then it is collectionwise normal. (2) If $\Sigma $ is a $\Sigma $-product of first countable, paracompact (subparacompact) Čech-scattered spaces, then it is shrinking (subshrinking).
LA - eng
KW - $\Sigma $-product; C-scattered; Čech-scattered; paracompact; subparacompact; collectionwise normal; shrinking; subshrinking; countable tightness; -product; collectionwise normality; shrinking; paracompact; scattered
UR - http://eudml.org/doc/249871
ER -
References
top- Aoki E., Mori N., Tanaka H., Paracompactness and the Lindelöf property in countable products, Topology Appl. 146-147 (2005), 57-66. (2005) Zbl1065.54013MR2107135
- Corson H.H., Normality in subsets of product spaces, Amer. J. Math. 81 (1959), 785-796. (1959) Zbl0095.37302MR0107222
- Engelking R., General Topology, Heldermann, Berlin, 1989. Zbl0684.54001MR1039321
- Gul'ko S.P., On the properties of subsets of -products, Soviet Math. Dokl. 18 (1977), 1438-1442. (1977)
- Hanaoka J., Tanaka H., -products of paracompact -like spaces, Topology Proc. 26 (2000-2001), 199-212. (2000-2001) MR1966992
- Higuchi S., Tanaka H., Covering properties in countable products, II, preprint. Zbl1150.54010MR2281011
- Hohti A., Ziqiu Y., Countable products of Čech-scattered supercomplete spaces, Czechoslovak Math. J. 49 (1999), 569-583. (1999) Zbl1003.54006MR1708354
- Kombarov A.P., On -products of topological spaces, Soviet Math. Dokl. 13 (1971), 1101-1104. (1971) Zbl0243.54001MR0284969
- Kombarov A.P., On tightness and normality of -products, Soviet Math. Dokl. 19 (1978), 403-407. (1978) MR0493933
- Kombarov A.P., Malykhin V.I., On -products, Soviet Math. Dokl. 14 (1973), 1780-1783. (1973)
- Rudin M.E., -products of metric spaces are normal, preprint.
- Rudin M.E., The shrinking property, Canad. Math. Bull. 28 (1983), 385-388. (1983) Zbl0536.54013MR0716576
- Tanaka H., Yajima Y., -products of paracompact C-scattered spaces, Topology Appl. 124 (2002), 39-46. (2002) MR1926133
- Telgársky R., C-scattered and paracompact spaces, Fund. Math. 73 (1971), 59-74. (1971) MR0295293
- Yajima Y., On -products of -spaces, Fund. Math. 123 (1984), 29-37. (1984) Zbl0556.54008MR0755616
- Yajima Y., The shrinking property of -products, Tsukuba J. Math. 13 (1989), 83-98. (1989) Zbl0697.54006MR1003593
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.