Σ -products of paracompact Čech-scattered spaces

Hidenori Tanaka

Commentationes Mathematicae Universitatis Carolinae (2006)

  • Volume: 47, Issue: 1, page 127-140
  • ISSN: 0010-2628

Abstract

top
In this paper, we shall discuss Σ -products of paracompact Čech-scattered spaces and show the following: (1) Let Σ be a Σ -product of paracompact Čech-scattered spaces. If Σ has countable tightness, then it is collectionwise normal. (2) If Σ is a Σ -product of first countable, paracompact (subparacompact) Čech-scattered spaces, then it is shrinking (subshrinking).

How to cite

top

Tanaka, Hidenori. "$\Sigma $-products of paracompact Čech-scattered spaces." Commentationes Mathematicae Universitatis Carolinae 47.1 (2006): 127-140. <http://eudml.org/doc/249871>.

@article{Tanaka2006,
abstract = {In this paper, we shall discuss $\Sigma $-products of paracompact Čech-scattered spaces and show the following: (1) Let $\Sigma $ be a $\Sigma $-product of paracompact Čech-scattered spaces. If $\Sigma $ has countable tightness, then it is collectionwise normal. (2) If $\Sigma $ is a $\Sigma $-product of first countable, paracompact (subparacompact) Čech-scattered spaces, then it is shrinking (subshrinking).},
author = {Tanaka, Hidenori},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$\Sigma $-product; C-scattered; Čech-scattered; paracompact; subparacompact; collectionwise normal; shrinking; subshrinking; countable tightness; -product; collectionwise normality; shrinking; paracompact; scattered},
language = {eng},
number = {1},
pages = {127-140},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$\Sigma $-products of paracompact Čech-scattered spaces},
url = {http://eudml.org/doc/249871},
volume = {47},
year = {2006},
}

TY - JOUR
AU - Tanaka, Hidenori
TI - $\Sigma $-products of paracompact Čech-scattered spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 1
SP - 127
EP - 140
AB - In this paper, we shall discuss $\Sigma $-products of paracompact Čech-scattered spaces and show the following: (1) Let $\Sigma $ be a $\Sigma $-product of paracompact Čech-scattered spaces. If $\Sigma $ has countable tightness, then it is collectionwise normal. (2) If $\Sigma $ is a $\Sigma $-product of first countable, paracompact (subparacompact) Čech-scattered spaces, then it is shrinking (subshrinking).
LA - eng
KW - $\Sigma $-product; C-scattered; Čech-scattered; paracompact; subparacompact; collectionwise normal; shrinking; subshrinking; countable tightness; -product; collectionwise normality; shrinking; paracompact; scattered
UR - http://eudml.org/doc/249871
ER -

References

top
  1. Aoki E., Mori N., Tanaka H., Paracompactness and the Lindelöf property in countable products, Topology Appl. 146-147 (2005), 57-66. (2005) Zbl1065.54013MR2107135
  2. Corson H.H., Normality in subsets of product spaces, Amer. J. Math. 81 (1959), 785-796. (1959) Zbl0095.37302MR0107222
  3. Engelking R., General Topology, Heldermann, Berlin, 1989. Zbl0684.54001MR1039321
  4. Gul'ko S.P., On the properties of subsets of Σ -products, Soviet Math. Dokl. 18 (1977), 1438-1442. (1977) 
  5. Hanaoka J., Tanaka H., Σ -products of paracompact 𝒟𝒞 -like spaces, Topology Proc. 26 (2000-2001), 199-212. (2000-2001) MR1966992
  6. Higuchi S., Tanaka H., Covering properties in countable products, II, preprint. Zbl1150.54010MR2281011
  7. Hohti A., Ziqiu Y., Countable products of Čech-scattered supercomplete spaces, Czechoslovak Math. J. 49 (1999), 569-583. (1999) Zbl1003.54006MR1708354
  8. Kombarov A.P., On Σ -products of topological spaces, Soviet Math. Dokl. 13 (1971), 1101-1104. (1971) Zbl0243.54001MR0284969
  9. Kombarov A.P., On tightness and normality of Σ -products, Soviet Math. Dokl. 19 (1978), 403-407. (1978) MR0493933
  10. Kombarov A.P., Malykhin V.I., On Σ -products, Soviet Math. Dokl. 14 (1973), 1780-1783. (1973) 
  11. Rudin M.E., Σ -products of metric spaces are normal, preprint. 
  12. Rudin M.E., The shrinking property, Canad. Math. Bull. 28 (1983), 385-388. (1983) Zbl0536.54013MR0716576
  13. Tanaka H., Yajima Y., Σ -products of paracompact C-scattered spaces, Topology Appl. 124 (2002), 39-46. (2002) MR1926133
  14. Telgársky R., C-scattered and paracompact spaces, Fund. Math. 73 (1971), 59-74. (1971) MR0295293
  15. Yajima Y., On Σ -products of Σ -spaces, Fund. Math. 123 (1984), 29-37. (1984) Zbl0556.54008MR0755616
  16. Yajima Y., The shrinking property of Σ -products, Tsukuba J. Math. 13 (1989), 83-98. (1989) Zbl0697.54006MR1003593

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.