Countable products of Čech-scattered supercomplete spaces

Aarno Hohti; Zi Qiu Yun

Czechoslovak Mathematical Journal (1999)

  • Volume: 49, Issue: 3, page 569-583
  • ISSN: 0011-4642

Abstract

top
We prove by using well-founded trees that a countable product of supercomplete spaces, scattered with respect to Čech-complete subsets, is supercomplete. This result extends results given in [Alstera], [Friedlera], [Frolika], [HohtiPelantb], [Pelanta] and its proof improves that given in [HohtiPelantb].

How to cite

top

Hohti, Aarno, and Yun, Zi Qiu. "Countable products of Čech-scattered supercomplete spaces." Czechoslovak Mathematical Journal 49.3 (1999): 569-583. <http://eudml.org/doc/30507>.

@article{Hohti1999,
abstract = {We prove by using well-founded trees that a countable product of supercomplete spaces, scattered with respect to Čech-complete subsets, is supercomplete. This result extends results given in [Alstera], [Friedlera], [Frolika], [HohtiPelantb], [Pelanta] and its proof improves that given in [HohtiPelantb].},
author = {Hohti, Aarno, Yun, Zi Qiu},
journal = {Czechoslovak Mathematical Journal},
keywords = {supercomplete; product spaces; Čech-complete; C-scattered; uniform space; paracompact; locally fine; product spaces; Čech-complete; -scattered; uniform space; paracompact; locally fine},
language = {eng},
number = {3},
pages = {569-583},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Countable products of Čech-scattered supercomplete spaces},
url = {http://eudml.org/doc/30507},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Hohti, Aarno
AU - Yun, Zi Qiu
TI - Countable products of Čech-scattered supercomplete spaces
JO - Czechoslovak Mathematical Journal
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 49
IS - 3
SP - 569
EP - 583
AB - We prove by using well-founded trees that a countable product of supercomplete spaces, scattered with respect to Čech-complete subsets, is supercomplete. This result extends results given in [Alstera], [Friedlera], [Frolika], [HohtiPelantb], [Pelanta] and its proof improves that given in [HohtiPelantb].
LA - eng
KW - supercomplete; product spaces; Čech-complete; C-scattered; uniform space; paracompact; locally fine; product spaces; Čech-complete; -scattered; uniform space; paracompact; locally fine
UR - http://eudml.org/doc/30507
ER -

References

top
  1. 10.4064/fm-114-3-173-181, Fund. Math. 114:3 (1981), 173–181 [Alstera]. (1981) Zbl0369.54005MR0644402DOI10.4064/fm-114-3-173-181
  2. On a class of spaces containing all metric and all locally bicompact spaces.-, Soviet Math. Dokl. 4 (1963), 1051–1055 [Arhangelskia]. (1963) 
  3. 10.2307/2372828, Amer. J. Math. 80 (1958), 185–190 [Corsona]. (1958) Zbl0080.15803MR0094780DOI10.2307/2372828
  4. Outline of General Topology.-, Polish Scientific Publishers, 1968 [Engelkinga]. (1968 [Engelkinga]) Zbl0157.53001MR0230273
  5. 10.2140/pjm.1987.129.277, Pacific Math. Journal 129:2 (1987), 277–296 [Friedlera]. (1987) MR0909031DOI10.2140/pjm.1987.129.277
  6. On the topological product of paracompact spaces.-, Bull. Acad. Pol. Sci. Math. 8 (1960), 747–750 [Frolika]. (1960) MR0125559
  7. Generalizations of G δ -property of complete metric spaces.-, Czechoslovak Math. J. 10 (85) (1960), 359–379 [Frolikb]. (1960) MR0116305
  8. Locally G δ -spaces.-, Czechoslovak Math. J. 12 (87) (1962), 346–354 [Frolikc]. (1962) MR0148028
  9. 10.2307/2040492, Proc. Amer. Math. Soc. 46:1 (1974), 111–119 [Frolikd]. (1974) MR0358704DOI10.2307/2040492
  10. 10.1090/S0002-9947-1959-0112119-4, Trans. Amer. Math. Soc. 93 (1959), 145–168 [Ginsburga]. (1959) MR0112119DOI10.1090/S0002-9947-1959-0112119-4
  11. Some nearly fine uniform spaces.-, Proc. London Math. Soc. (3), 28 (1974), 517–546 [Hagera]. (1974) Zbl0284.54017MR0397670
  12. 10.4064/fm-16-1-353-360, Fund. Math. 16 (1930), 353–360 [Hausdorffa]. (1930) DOI10.4064/fm-16-1-353-360
  13. On uniform paracompactness.-, Ann. Acad. Scient. Fenn., Series A, I. Mathematica, Dissertationes 36 (1981 [Hohtia]). (1981 [Hohtia]) Zbl0502.54021MR0625526
  14. 10.1090/S0002-9939-1983-0684658-8, Proc. Amer. Math. Soc. 87 (1983), 557–560 [Hohtib]. (1983) Zbl0538.54015MR0684658DOI10.1090/S0002-9939-1983-0684658-8
  15. 10.2140/pjm.1984.111.39, Pacific J. Math. 111 (1) (1984), 39–48 [Hohtic]. (1984) Zbl0558.54020MR0732057DOI10.2140/pjm.1984.111.39
  16. On supercomplete uniform spaces II.-, Czechoslovak Math. J. 37 (1987), 376–385 [Hohtid]. (1987) Zbl0654.54020MR0904765
  17. 10.1090/S0002-9939-1986-0835894-1, Proc. Amer. Math. Soc. 97:2, 339–342 [Hohtie]. MR0835894DOI10.1090/S0002-9939-1986-0835894-1
  18. 10.4064/fm-125-2-133-142, Fund. Math. CXXV (1985), 133–142 [HohtiPelanta]. (1985) MR0813750DOI10.4064/fm-125-2-133-142
  19. 10.4064/fm-136-2-115-120, Fund. Math. 136:2 (1990), 115–120 [HohtiPelantb]. (1990) MR1074656DOI10.4064/fm-136-2-115-120
  20. 10.1016/0166-8641(87)90081-2, Topology Appl. 25 (1987), 245–252 [Huseka]. (1987) MR0889869DOI10.1016/0166-8641(87)90081-2
  21. 10.2140/pjm.1962.12.287, Pacific J. Math. 12 (1962), 287–290 [Isbella]. (1962) Zbl0104.39503MR0156311DOI10.2140/pjm.1962.12.287
  22. Uniform spaces.-, Math. Surveys, no. 12, Amer. Math. Soc., Providence, R. I., 1964 [Isbellb]. (1964 [Isbellb]) Zbl0124.15601MR0170323
  23. An Introduction to Intersection Homology Theory.-, Pitman Research Notes in Mathematics Series 187, Longman, 1988 [Kirwana]. (1988 [Kirwana]) Zbl0656.55002MR0981185
  24. 10.1090/S0002-9904-1963-10931-3, Bull. Amer. Math. Soc. 69 (1963), 375–376 [Michaela]. (1963) Zbl0114.38904MR0152985DOI10.1090/S0002-9904-1963-10931-3
  25. On the dimension of rectangular products.-, Sov. Math. Dokl. 16 (1975), 344–347 [Pasynkova]. (1975) Zbl0334.54024MR0377833
  26. Locally fine uniformities and normal covers.-, Czechoslovak Math. J. 37 (112) (1987), 181–187 [Pelanta]. (1987) Zbl0656.54020MR0882592
  27. 10.1090/S0002-9939-1977-0436085-3, Proc. Amer. Math. Soc. 62:2 (1977), 359–362 [Ricea]. (1977) Zbl0353.54011MR0436085DOI10.1090/S0002-9939-1977-0436085-3
  28. 10.1090/S0002-9939-1983-0715885-9, Proc. Amer. Math. Soc. 89:3 (1983), 551–552 [Rudina]. (1983) MR0715885DOI10.1090/S0002-9939-1983-0715885-9
  29. 10.1090/S0002-9947-1963-0151935-0, Trans. Amer. Math. Soc. 107 (1963), 58–70 [Stonea]. (1963) Zbl0114.38604MR0151935DOI10.1090/S0002-9947-1963-0151935-0
  30. 10.4064/fm-73-1-59-74, Fund. Math. 73 (1971), 59–74 [Telgarskya]. (1971) MR0295293DOI10.4064/fm-73-1-59-74
  31. Spaces defined by topological games.-, Fund. Math. LXXXVIII:3 (1975), 193–223 [Telgarskyb]. (1975) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.