f -derivations on rings and modules

Paul E. Bland

Commentationes Mathematicae Universitatis Carolinae (2006)

  • Volume: 47, Issue: 3, page 379-390
  • ISSN: 0010-2628

Abstract

top
If τ is a hereditary torsion theory on 𝐌𝐨𝐝 R and Q τ : 𝐌𝐨𝐝 R 𝐌𝐨𝐝 R is the localization functor, then we show that every f -derivation d : M N has a unique extension to an f τ -derivation d τ : Q τ ( M ) Q τ ( N ) when τ is a differential torsion theory on 𝐌𝐨𝐝 R . Dually, it is shown that if τ is cohereditary and C τ : 𝐌𝐨𝐝 R 𝐌𝐨𝐝 R is the colocalization functor, then every f -derivation d : M N can be lifted uniquely to an f τ -derivation d τ : C τ ( M ) C τ ( N ) .

How to cite

top

Bland, Paul E.. "$f$-derivations on rings and modules." Commentationes Mathematicae Universitatis Carolinae 47.3 (2006): 379-390. <http://eudml.org/doc/249876>.

@article{Bland2006,
abstract = {If $\tau $ is a hereditary torsion theory on $\mathbf \{Mod\}_\{R\}$ and $Q_\{\tau \}:\mathbf \{Mod\}_\{R\}\rightarrow \mathbf \{Mod\}_\{R\}$ is the localization functor, then we show that every $f$-derivation $d:M\rightarrow N$ has a unique extension to an $f_\{\tau \}$-derivation $d_\{\tau \}:Q_\{\tau \}(M)\rightarrow Q_\{\tau \}(N)$ when $\tau $ is a differential torsion theory on $\mathbf \{Mod\}_\{R\}$. Dually, it is shown that if $\tau $ is cohereditary and $C_\{\tau \}:\mathbf \{Mod\}_\{R\}\rightarrow \mathbf \{Mod\}_\{R\}$ is the colocalization functor, then every $f$-derivation $d:M\rightarrow N$ can be lifted uniquely to an $f_\{\tau \}$-derivation $d_\{\tau \}:C_\{\tau \}(M)\rightarrow C_\{\tau \}(N)$.},
author = {Bland, Paul E.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {torsion theory; differential filter; localization; colocalization; $f$-derivation; torsion theory; differential filter; localization; colocalization; -derivation},
language = {eng},
number = {3},
pages = {379-390},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$f$-derivations on rings and modules},
url = {http://eudml.org/doc/249876},
volume = {47},
year = {2006},
}

TY - JOUR
AU - Bland, Paul E.
TI - $f$-derivations on rings and modules
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 3
SP - 379
EP - 390
AB - If $\tau $ is a hereditary torsion theory on $\mathbf {Mod}_{R}$ and $Q_{\tau }:\mathbf {Mod}_{R}\rightarrow \mathbf {Mod}_{R}$ is the localization functor, then we show that every $f$-derivation $d:M\rightarrow N$ has a unique extension to an $f_{\tau }$-derivation $d_{\tau }:Q_{\tau }(M)\rightarrow Q_{\tau }(N)$ when $\tau $ is a differential torsion theory on $\mathbf {Mod}_{R}$. Dually, it is shown that if $\tau $ is cohereditary and $C_{\tau }:\mathbf {Mod}_{R}\rightarrow \mathbf {Mod}_{R}$ is the colocalization functor, then every $f$-derivation $d:M\rightarrow N$ can be lifted uniquely to an $f_{\tau }$-derivation $d_{\tau }:C_{\tau }(M)\rightarrow C_{\tau }(N)$.
LA - eng
KW - torsion theory; differential filter; localization; colocalization; $f$-derivation; torsion theory; differential filter; localization; colocalization; -derivation
UR - http://eudml.org/doc/249876
ER -

References

top
  1. Alin J.S., Armendariz E.P., TTF classes over perfect rings, J. Austral. Math. Soc. 11 (1970), 499-503. (1970) Zbl0221.16006MR0274495
  2. Anderson F.W., Fuller K.R., Rings and Categories of Modules, Springer, Berlin, 1973. Zbl0765.16001MR1245487
  3. Beachy J.A., Cotorsion radical and projective modules, Bull. Austral Math. Soc. 5 (1971), 241-253. (1971) MR0292879
  4. Bland P.E., Differential torsion theory, J. Pure Appl. Algebra 204 (2006), 1 1-8. (2006) Zbl1102.16020MR2183307
  5. Bland P.E., Topics in Torsion Theory, Mathematical Research 103, Wiley-VCH, Berlin, 1998. Zbl0899.16013MR1640903
  6. Dlab V., A characterization of perfect rings, Pacific J. Math. 33 (1970), 79-88. (1970) Zbl0209.07201MR0262297
  7. Gabriel P., Des catégories abeliennes, Bull. Soc. Math. France 90 (1962), 323-448. (1962) Zbl0201.35602MR0232821
  8. Bronn S.D., Cotorsion theories, Pacific J. Math. 48 (1973), 355-363. (1973) Zbl0285.16026MR0393131
  9. Golan J.S., Extension of derivations to modules of quotients, Comm. Algebra 9 3 (1981), 275-281. (1981) Zbl0454.16020MR0603349
  10. Golan J.S., Torsion Theories, Pitman Monographs and Surveys in Pure and Applied Mathematics 29, Longman Scientific and Technical, Harlow, 1986. Zbl0695.16021MR0880019
  11. Jans J.P., Some aspects of torsion, Pacific J. Math. 15 (1965), 1249-1259. (1965) Zbl0142.28002MR0191936
  12. Lam T.Y., Lecture on Modules and Rings, Graduate Texts in Mathematics 189, Springer, New York, 1999. 
  13. McMaster R.J., Cotorsion theories and colocalization, Canad. J. Math. 27 (1971), 618-628. (1971) MR0401818
  14. Ohtake K., Colocalization and localization, J. Pure Appl. Algebra 11 (1977), 217-241. (1977) MR0470027
  15. Sato M., The concrete description of colocalization, Proc. Japan Acad. 52 (1976), 501-504. (1976) MR0432688

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.