-derivations on rings and modules
Commentationes Mathematicae Universitatis Carolinae (2006)
- Volume: 47, Issue: 3, page 379-390
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBland, Paul E.. "$f$-derivations on rings and modules." Commentationes Mathematicae Universitatis Carolinae 47.3 (2006): 379-390. <http://eudml.org/doc/249876>.
@article{Bland2006,
abstract = {If $\tau $ is a hereditary torsion theory on $\mathbf \{Mod\}_\{R\}$ and $Q_\{\tau \}:\mathbf \{Mod\}_\{R\}\rightarrow \mathbf \{Mod\}_\{R\}$ is the localization functor, then we show that every $f$-derivation $d:M\rightarrow N$ has a unique extension to an $f_\{\tau \}$-derivation $d_\{\tau \}:Q_\{\tau \}(M)\rightarrow Q_\{\tau \}(N)$ when $\tau $ is a differential torsion theory on $\mathbf \{Mod\}_\{R\}$. Dually, it is shown that if $\tau $ is cohereditary and $C_\{\tau \}:\mathbf \{Mod\}_\{R\}\rightarrow \mathbf \{Mod\}_\{R\}$ is the colocalization functor, then every $f$-derivation $d:M\rightarrow N$ can be lifted uniquely to an $f_\{\tau \}$-derivation $d_\{\tau \}:C_\{\tau \}(M)\rightarrow C_\{\tau \}(N)$.},
author = {Bland, Paul E.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {torsion theory; differential filter; localization; colocalization; $f$-derivation; torsion theory; differential filter; localization; colocalization; -derivation},
language = {eng},
number = {3},
pages = {379-390},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$f$-derivations on rings and modules},
url = {http://eudml.org/doc/249876},
volume = {47},
year = {2006},
}
TY - JOUR
AU - Bland, Paul E.
TI - $f$-derivations on rings and modules
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 3
SP - 379
EP - 390
AB - If $\tau $ is a hereditary torsion theory on $\mathbf {Mod}_{R}$ and $Q_{\tau }:\mathbf {Mod}_{R}\rightarrow \mathbf {Mod}_{R}$ is the localization functor, then we show that every $f$-derivation $d:M\rightarrow N$ has a unique extension to an $f_{\tau }$-derivation $d_{\tau }:Q_{\tau }(M)\rightarrow Q_{\tau }(N)$ when $\tau $ is a differential torsion theory on $\mathbf {Mod}_{R}$. Dually, it is shown that if $\tau $ is cohereditary and $C_{\tau }:\mathbf {Mod}_{R}\rightarrow \mathbf {Mod}_{R}$ is the colocalization functor, then every $f$-derivation $d:M\rightarrow N$ can be lifted uniquely to an $f_{\tau }$-derivation $d_{\tau }:C_{\tau }(M)\rightarrow C_{\tau }(N)$.
LA - eng
KW - torsion theory; differential filter; localization; colocalization; $f$-derivation; torsion theory; differential filter; localization; colocalization; -derivation
UR - http://eudml.org/doc/249876
ER -
References
top- Alin J.S., Armendariz E.P., TTF classes over perfect rings, J. Austral. Math. Soc. 11 (1970), 499-503. (1970) Zbl0221.16006MR0274495
- Anderson F.W., Fuller K.R., Rings and Categories of Modules, Springer, Berlin, 1973. Zbl0765.16001MR1245487
- Beachy J.A., Cotorsion radical and projective modules, Bull. Austral Math. Soc. 5 (1971), 241-253. (1971) MR0292879
- Bland P.E., Differential torsion theory, J. Pure Appl. Algebra 204 (2006), 1 1-8. (2006) Zbl1102.16020MR2183307
- Bland P.E., Topics in Torsion Theory, Mathematical Research 103, Wiley-VCH, Berlin, 1998. Zbl0899.16013MR1640903
- Dlab V., A characterization of perfect rings, Pacific J. Math. 33 (1970), 79-88. (1970) Zbl0209.07201MR0262297
- Gabriel P., Des catégories abeliennes, Bull. Soc. Math. France 90 (1962), 323-448. (1962) Zbl0201.35602MR0232821
- Bronn S.D., Cotorsion theories, Pacific J. Math. 48 (1973), 355-363. (1973) Zbl0285.16026MR0393131
- Golan J.S., Extension of derivations to modules of quotients, Comm. Algebra 9 3 (1981), 275-281. (1981) Zbl0454.16020MR0603349
- Golan J.S., Torsion Theories, Pitman Monographs and Surveys in Pure and Applied Mathematics 29, Longman Scientific and Technical, Harlow, 1986. Zbl0695.16021MR0880019
- Jans J.P., Some aspects of torsion, Pacific J. Math. 15 (1965), 1249-1259. (1965) Zbl0142.28002MR0191936
- Lam T.Y., Lecture on Modules and Rings, Graduate Texts in Mathematics 189, Springer, New York, 1999.
- McMaster R.J., Cotorsion theories and colocalization, Canad. J. Math. 27 (1971), 618-628. (1971) MR0401818
- Ohtake K., Colocalization and localization, J. Pure Appl. Algebra 11 (1977), 217-241. (1977) MR0470027
- Sato M., The concrete description of colocalization, Proc. Japan Acad. 52 (1976), 501-504. (1976) MR0432688
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.