Covering properties in countable products, II

Sachio Higuchi; Hidenori Tanaka

Commentationes Mathematicae Universitatis Carolinae (2006)

  • Volume: 47, Issue: 3, page 491-502
  • ISSN: 0010-2628

Abstract

top
In this paper, we discuss covering properties in countable products of Čech-scattered spaces and prove the following: (1) If Y is a perfect subparacompact space and { X n : n ω } is a countable collection of subparacompact Čech-scattered spaces, then the product Y × n ω X n is subparacompact and (2) If { X n : n ω } is a countable collection of metacompact Čech-scattered spaces, then the product n ω X n is metacompact.

How to cite

top

Higuchi, Sachio, and Tanaka, Hidenori. "Covering properties in countable products, II." Commentationes Mathematicae Universitatis Carolinae 47.3 (2006): 491-502. <http://eudml.org/doc/249879>.

@article{Higuchi2006,
abstract = {In this paper, we discuss covering properties in countable products of Čech-scattered spaces and prove the following: (1) If $Y$ is a perfect subparacompact space and $\lbrace X_n : n\in \omega \rbrace $ is a countable collection of subparacompact Čech-scattered spaces, then the product $Y\times \prod _\{n\in \omega \}X_n$ is subparacompact and (2) If $\lbrace X_n : n\in \omega \rbrace $ is a countable collection of metacompact Čech-scattered spaces, then the product $\prod _\{n\in \omega \}X_n$ is metacompact.},
author = {Higuchi, Sachio, Tanaka, Hidenori},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {countable product; C-scattered; Čech-scatterd; subparacompact; metacompact; countable product; C-scattered; Čech-scatterd; subparacompact; metacompact},
language = {eng},
number = {3},
pages = {491-502},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Covering properties in countable products, II},
url = {http://eudml.org/doc/249879},
volume = {47},
year = {2006},
}

TY - JOUR
AU - Higuchi, Sachio
AU - Tanaka, Hidenori
TI - Covering properties in countable products, II
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 3
SP - 491
EP - 502
AB - In this paper, we discuss covering properties in countable products of Čech-scattered spaces and prove the following: (1) If $Y$ is a perfect subparacompact space and $\lbrace X_n : n\in \omega \rbrace $ is a countable collection of subparacompact Čech-scattered spaces, then the product $Y\times \prod _{n\in \omega }X_n$ is subparacompact and (2) If $\lbrace X_n : n\in \omega \rbrace $ is a countable collection of metacompact Čech-scattered spaces, then the product $\prod _{n\in \omega }X_n$ is metacompact.
LA - eng
KW - countable product; C-scattered; Čech-scatterd; subparacompact; metacompact; countable product; C-scattered; Čech-scatterd; subparacompact; metacompact
UR - http://eudml.org/doc/249879
ER -

References

top
  1. Aoki E., Mori N., Tanaka H., Paracompactness and the Lindelöf property in countable products, Topology Appl. 146-147 (2005), 57-66. (2005) Zbl1065.54013MR2107135
  2. Alster K., On the product of a perfect paracompact space and a countable product of scattered paracompact spaces, Fund. Math 127 (1987), 241-246. (1987) Zbl0641.54005MR0917148
  3. Engelking R., General Topology, Heldermann, Berlin, 1989. Zbl0684.54001MR1039321
  4. Gruenhage G., Yajima Y., A filter property of submetacompactness and its application to products, Topology Appl. 36 (1990), 43-55. (1990) Zbl0723.54009MR1062184
  5. Hohti A., Ziqiu Y., Countable products of Čech-scattered supercomplete spaces, Czechoslovak Math. J. 49 (1999), 569-583. (1999) Zbl1003.54006MR1708354
  6. Kunen K., Set Theory: An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980. Zbl0534.03026MR0597342
  7. Smith J.C., Properties of weakly ø v e r l i n e θ -refinable spaces, Proc. Amer. Math. Soc. 53 (1975), 511-517. (1975) MR0380731
  8. Tanaka H., A class of spaces whose countable products with a perfect paracompact space is paracompact, Tsukuba J. Math. 16 (1992), 503-512. (1992) MR1200443
  9. Tanaka H., Covering properties in countable products, Tsukuba J. Math. 17 (1993), 565-587. (1993) Zbl0804.54009MR1255492
  10. Tanaka H., Submetacompactness and weak submetacompactness in countable products, Topology Appl. 67 (1995), 29-41. (1995) Zbl0835.54021MR1360216
  11. Tanaka H., Submetacompactness in countable products, Topplogy Proc. 27 (2003), 307-316. (2003) Zbl1075.54006MR2048940
  12. Telgársky R., C-scattered and paracompact spaces, Fund. Math. 73 (1971), 59-74. (1971) MR0295293
  13. Yajima Y., Topological games and products, Fund. Math. 117 (1983), 223-238. (1983) Zbl0583.54014MR0719842
  14. Yajima Y., Special refinements and their applications on products, Topology Appl. 104 (2000), 293-308. (2000) Zbl0979.54010MR1780990

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.