A new class of weakly -analytic Banach spaces
Sophocles Mercourakis; E. Stamati
Commentationes Mathematicae Universitatis Carolinae (2006)
- Volume: 47, Issue: 2, page 291-312
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMercourakis, Sophocles, and Stamati, E.. "A new class of weakly $K$-analytic Banach spaces." Commentationes Mathematicae Universitatis Carolinae 47.2 (2006): 291-312. <http://eudml.org/doc/249885>.
@article{Mercourakis2006,
abstract = {In this paper we define and investigate a new subclass of those Banach spaces which are $K$-analytic in their weak topology; we call them strongly weakly $K$-analytic (SWKA) Banach spaces. The class of SWKA Banach spaces extends the known class of strongly weakly compactly generated (SWCG) Banach spaces (and their subspaces) and it is related to that in the same way as the familiar classes of weakly $K$-analytic (WKA) and weakly compactly generated (WCG) Banach spaces are related. We show that: (i) not every separable Banach space is SWKA; (ii) every separable SWKA Banach space not containing $\ell ^1$ is Polish; (iii) we answer in the negative a question posed in [S-W] by constructing a subspace $X$ of the SWCG space $L^1[0,1]$ which is not SWCG.},
author = {Mercourakis, Sophocles, Stamati, E.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {WKA; SWKA Banach spaces; $K$-analytic space; Baire space; Polish space; WKA; SWKA Banach spaces; -analytic space; Baire space; Polish space},
language = {eng},
number = {2},
pages = {291-312},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A new class of weakly $K$-analytic Banach spaces},
url = {http://eudml.org/doc/249885},
volume = {47},
year = {2006},
}
TY - JOUR
AU - Mercourakis, Sophocles
AU - Stamati, E.
TI - A new class of weakly $K$-analytic Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 2
SP - 291
EP - 312
AB - In this paper we define and investigate a new subclass of those Banach spaces which are $K$-analytic in their weak topology; we call them strongly weakly $K$-analytic (SWKA) Banach spaces. The class of SWKA Banach spaces extends the known class of strongly weakly compactly generated (SWCG) Banach spaces (and their subspaces) and it is related to that in the same way as the familiar classes of weakly $K$-analytic (WKA) and weakly compactly generated (WCG) Banach spaces are related. We show that: (i) not every separable Banach space is SWKA; (ii) every separable SWKA Banach space not containing $\ell ^1$ is Polish; (iii) we answer in the negative a question posed in [S-W] by constructing a subspace $X$ of the SWCG space $L^1[0,1]$ which is not SWCG.
LA - eng
KW - WKA; SWKA Banach spaces; $K$-analytic space; Baire space; Polish space; WKA; SWKA Banach spaces; -analytic space; Baire space; Polish space
UR - http://eudml.org/doc/249885
ER -
References
top- Argyros S., Mercourakis S., On weakly Lindelöf Banach spaces, Rocky Mountain J. Math. 23 395-446 (1993). (1993) Zbl0797.46009MR1226181
- Christensen J.P.R., Topology and Borel Structure, North-Holland, Amsterdam, 1974. Zbl0273.28001MR0348724
- Deville R., Godefroy G., Zizler V., Smoothness and renorming in Banach spaces, Longman, Harlow, 1993. MR1211634
- Engelking R., General Topology, PWN, Warszawa, 1977. Zbl0684.54001MR0500780
- Edgar G.A., Wheller R.F., Topological properties of Banach spaces, Pacific J. Math. 115 2 317-350 (1984). (1984) MR0765190
- Habala P., Hájek P., Zizler V., Introduction to Banach Spaces I and II, Matfyzpress, Praha, 1996.
- Jayne J.E., Rogers C.A., -analytic sets, in Analytic Sets, Academic Press, London, 1980. Zbl0589.54047
- Kuratowski K., Topology, Vol. I (1966), Vol. II (1968), Academic Press, New York-London. Zbl0849.01044MR0217751
- Lindenstrauss J., Tzafriri L., Classical Banach Spaces I, Springer, Berlin-New York, 1977. Zbl0362.46013MR0500056
- Mercourakis S., On weakly countably determined Banach spaces, Trans. Amer. Math. Soc. 300 307-327 (1987). (1987) Zbl0621.46018MR0871678
- Mercourakis S., Negrepontis S., Banach Spaces and Topology II, Recent Progress in General Topology, M. Hušek and J. Van Mill (eds.), North-Holland, Amsterdam, 1992, pp.493-536. Zbl0832.46005MR1229137
- Negrepontis S., Banach Spaces and Topology, Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan (eds.), North-Holland, Amsterdam, 1984, pp.1045-1142. Zbl0832.46005MR0776642
- Rosenthal H.P., A characterization of Banach spaces containing , Proc. Nat. Acad. Sci. (USA) 71 2411-2413 (1974). (1974) MR0358307
- Rosenthal H.P., The heredity problem for weakly compactly generated Banach spaces, Compositio Math. 28 83-111 (1974). (1974) Zbl0298.46013MR0417762
- Rosenthal H.P., Weak*-Polish Banach spaces, J. Funct. Anal. 76 267-316 (1988). (1988) Zbl0655.46011MR0924462
- Stegall C., The Radon-Nikodym property in conjugate Banach spaces, Trans. Amer. Math. Soc. 206 213-223 (1975). (1975) Zbl0318.46056MR0374381
- Stern J., A Ramsey theorem for trees, with an application to Banach spaces, Israel J. Math. 29 179-188 (1978). (1978) Zbl0378.46012MR0476554
- Schlüchtermann G., Wheeler R.F., On Strongly WCG Banach spaces, Math. Z. 199 387-398 (1988). (1988) MR0961818
- Talagrand M., Espaces de Banach faiblement -analytiques, Ann. of Math. 110 407-438 (1979). (1979) MR0554378
- Todorčević S., Compact subsets of the first Baire class, J. Amer. Math. Soc. 12 4 1179-1212 (1999). (1999) MR1685782
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.