Isomorphism of commutative group algebras of p -mixed splitting groups over rings of characteristic zero

Peter Vassilev Danchev

Mathematica Bohemica (2006)

  • Volume: 131, Issue: 1, page 85-93
  • ISSN: 0862-7959

Abstract

top
Suppose G is a p -mixed splitting abelian group and R is a commutative unitary ring of zero characteristic such that the prime number p satisfies p inv ( R ) zd ( R ) . Then R ( H ) and R ( G ) are canonically isomorphic R -group algebras for any group H precisely when H and G are isomorphic groups. This statement strengthens results due to W. May published in J. Algebra (1976) and to W. Ullery published in Commun. Algebra (1986), Rocky Mt. J. Math. (1992) and Comment. Math. Univ. Carol. (1995).

How to cite

top

Danchev, Peter Vassilev. "Isomorphism of commutative group algebras of $p$-mixed splitting groups over rings of characteristic zero." Mathematica Bohemica 131.1 (2006): 85-93. <http://eudml.org/doc/249902>.

@article{Danchev2006,
abstract = {Suppose $G$ is a $p$-mixed splitting abelian group and $R$ is a commutative unitary ring of zero characteristic such that the prime number $p$ satisfies $p\notin \mathop \{\text\{inv\}\}(R) \cup \mathop \{\text\{zd\}\}(R)$. Then $R(H)$ and $R(G)$ are canonically isomorphic $R$-group algebras for any group $H$ precisely when $H$ and $G$ are isomorphic groups. This statement strengthens results due to W. May published in J. Algebra (1976) and to W. Ullery published in Commun. Algebra (1986), Rocky Mt. J. Math. (1992) and Comment. Math. Univ. Carol. (1995).},
author = {Danchev, Peter Vassilev},
journal = {Mathematica Bohemica},
keywords = {group algebras; isomorphisms; $p$-mixed splitting groups; rings with zero characteristic; group algebras; isomorphism problem; -mixed splitting Abelian groups},
language = {eng},
number = {1},
pages = {85-93},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Isomorphism of commutative group algebras of $p$-mixed splitting groups over rings of characteristic zero},
url = {http://eudml.org/doc/249902},
volume = {131},
year = {2006},
}

TY - JOUR
AU - Danchev, Peter Vassilev
TI - Isomorphism of commutative group algebras of $p$-mixed splitting groups over rings of characteristic zero
JO - Mathematica Bohemica
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 131
IS - 1
SP - 85
EP - 93
AB - Suppose $G$ is a $p$-mixed splitting abelian group and $R$ is a commutative unitary ring of zero characteristic such that the prime number $p$ satisfies $p\notin \mathop {\text{inv}}(R) \cup \mathop {\text{zd}}(R)$. Then $R(H)$ and $R(G)$ are canonically isomorphic $R$-group algebras for any group $H$ precisely when $H$ and $G$ are isomorphic groups. This statement strengthens results due to W. May published in J. Algebra (1976) and to W. Ullery published in Commun. Algebra (1986), Rocky Mt. J. Math. (1992) and Comment. Math. Univ. Carol. (1995).
LA - eng
KW - group algebras; isomorphisms; $p$-mixed splitting groups; rings with zero characteristic; group algebras; isomorphism problem; -mixed splitting Abelian groups
UR - http://eudml.org/doc/249902
ER -

References

top
  1. Group algebras of abelian groups, Rend. Sem. Mat. Univ. Padova 69 (1983), 41–50. (1983) MR0716984
  2. Isomorphic semisimple group algebras, C. R. Acad. Bulg. Sci. 53 (2000), 13–14. (2000) Zbl0964.20001MR1779521
  3. A new simple proof of the W. May’s claim: F G determines G / G 0 , Riv. Mat. Univ. Parma 1 (2002), 69–71. (2002) Zbl1019.20002MR1951976
  4. A note on isomorphic commutative group algebras over certain rings, An. St. Univ. Ovidius Constanta 13 (2005), 69–74. (2005) Zbl1113.20005MR2230861
  5. 10.1016/0021-8693(70)90093-1, J. Algebra 14 (1970), 423–442. (1970) MR0255675DOI10.1016/0021-8693(70)90093-1
  6. 10.1017/S1446788700021534, J. Austral. Math. Soc., Ser. A 29 (1980), 385–392. (1980) Zbl0432.16007MR0578697DOI10.1017/S1446788700021534
  7. 10.1090/S0002-9947-1969-0233903-9, Trans. Amer. Math. Soc. 136 (1969), 139–149. (1969) Zbl0182.04401MR0233903DOI10.1090/S0002-9947-1969-0233903-9
  8. 10.1215/ijm/1256052619, J. Math. 15 (1971), 525–531. (1971) MR0286903DOI10.1215/ijm/1256052619
  9. 10.1016/0021-8693(76)90049-1, J. Algebra 39 (1976), 483–511. (1976) Zbl0328.16012MR0399232DOI10.1016/0021-8693(76)90049-1
  10. 10.1016/0021-8693(76)90083-1, J. Algebra 40 (1976), 10–18. (1976) Zbl0329.20002MR0414618DOI10.1016/0021-8693(76)90083-1
  11. 10.1080/00927878608823334, Commun. Algebra 14 (1986), 767–785. (1986) Zbl0587.16011MR0834462DOI10.1080/00927878608823334
  12. 10.1216/rmjm/1181072715, Rocky Mt. J. Math. 22 (1992), 1111–1122. (1992) Zbl0773.16008MR1183707DOI10.1216/rmjm/1181072715
  13. A note on group algebras of p -primary abelian groups, Comment. Math. Univ. Carol. 36 (1995), 11–14. (1995) Zbl0828.20005MR1334408

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.