Isomorphism of commutative group algebras of -mixed splitting groups over rings of characteristic zero
Mathematica Bohemica (2006)
- Volume: 131, Issue: 1, page 85-93
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topDanchev, Peter Vassilev. "Isomorphism of commutative group algebras of $p$-mixed splitting groups over rings of characteristic zero." Mathematica Bohemica 131.1 (2006): 85-93. <http://eudml.org/doc/249902>.
@article{Danchev2006,
abstract = {Suppose $G$ is a $p$-mixed splitting abelian group and $R$ is a commutative unitary ring of zero characteristic such that the prime number $p$ satisfies $p\notin \mathop \{\text\{inv\}\}(R) \cup \mathop \{\text\{zd\}\}(R)$. Then $R(H)$ and $R(G)$ are canonically isomorphic $R$-group algebras for any group $H$ precisely when $H$ and $G$ are isomorphic groups. This statement strengthens results due to W. May published in J. Algebra (1976) and to W. Ullery published in Commun. Algebra (1986), Rocky Mt. J. Math. (1992) and Comment. Math. Univ. Carol. (1995).},
author = {Danchev, Peter Vassilev},
journal = {Mathematica Bohemica},
keywords = {group algebras; isomorphisms; $p$-mixed splitting groups; rings with zero characteristic; group algebras; isomorphism problem; -mixed splitting Abelian groups},
language = {eng},
number = {1},
pages = {85-93},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Isomorphism of commutative group algebras of $p$-mixed splitting groups over rings of characteristic zero},
url = {http://eudml.org/doc/249902},
volume = {131},
year = {2006},
}
TY - JOUR
AU - Danchev, Peter Vassilev
TI - Isomorphism of commutative group algebras of $p$-mixed splitting groups over rings of characteristic zero
JO - Mathematica Bohemica
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 131
IS - 1
SP - 85
EP - 93
AB - Suppose $G$ is a $p$-mixed splitting abelian group and $R$ is a commutative unitary ring of zero characteristic such that the prime number $p$ satisfies $p\notin \mathop {\text{inv}}(R) \cup \mathop {\text{zd}}(R)$. Then $R(H)$ and $R(G)$ are canonically isomorphic $R$-group algebras for any group $H$ precisely when $H$ and $G$ are isomorphic groups. This statement strengthens results due to W. May published in J. Algebra (1976) and to W. Ullery published in Commun. Algebra (1986), Rocky Mt. J. Math. (1992) and Comment. Math. Univ. Carol. (1995).
LA - eng
KW - group algebras; isomorphisms; $p$-mixed splitting groups; rings with zero characteristic; group algebras; isomorphism problem; -mixed splitting Abelian groups
UR - http://eudml.org/doc/249902
ER -
References
top- Group algebras of abelian groups, Rend. Sem. Mat. Univ. Padova 69 (1983), 41–50. (1983) MR0716984
- Isomorphic semisimple group algebras, C. R. Acad. Bulg. Sci. 53 (2000), 13–14. (2000) Zbl0964.20001MR1779521
- A new simple proof of the W. May’s claim: determines , Riv. Mat. Univ. Parma 1 (2002), 69–71. (2002) Zbl1019.20002MR1951976
- A note on isomorphic commutative group algebras over certain rings, An. St. Univ. Ovidius Constanta 13 (2005), 69–74. (2005) Zbl1113.20005MR2230861
- 10.1016/0021-8693(70)90093-1, J. Algebra 14 (1970), 423–442. (1970) MR0255675DOI10.1016/0021-8693(70)90093-1
- 10.1017/S1446788700021534, J. Austral. Math. Soc., Ser. A 29 (1980), 385–392. (1980) Zbl0432.16007MR0578697DOI10.1017/S1446788700021534
- 10.1090/S0002-9947-1969-0233903-9, Trans. Amer. Math. Soc. 136 (1969), 139–149. (1969) Zbl0182.04401MR0233903DOI10.1090/S0002-9947-1969-0233903-9
- 10.1215/ijm/1256052619, J. Math. 15 (1971), 525–531. (1971) MR0286903DOI10.1215/ijm/1256052619
- 10.1016/0021-8693(76)90049-1, J. Algebra 39 (1976), 483–511. (1976) Zbl0328.16012MR0399232DOI10.1016/0021-8693(76)90049-1
- 10.1016/0021-8693(76)90083-1, J. Algebra 40 (1976), 10–18. (1976) Zbl0329.20002MR0414618DOI10.1016/0021-8693(76)90083-1
- 10.1080/00927878608823334, Commun. Algebra 14 (1986), 767–785. (1986) Zbl0587.16011MR0834462DOI10.1080/00927878608823334
- 10.1216/rmjm/1181072715, Rocky Mt. J. Math. 22 (1992), 1111–1122. (1992) Zbl0773.16008MR1183707DOI10.1216/rmjm/1181072715
- A note on group algebras of -primary abelian groups, Comment. Math. Univ. Carol. 36 (1995), 11–14. (1995) Zbl0828.20005MR1334408
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.