Multipliers for generalized Riemann integrals in the real line
Mathematica Bohemica (2006)
- Volume: 131, Issue: 2, page 161-166
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topLee, Tuo-Yeong. "Multipliers for generalized Riemann integrals in the real line." Mathematica Bohemica 131.2 (2006): 161-166. <http://eudml.org/doc/249906>.
@article{Lee2006,
abstract = {We use an elementary method to prove that each $BV$ function is a multiplier for the $C$-integral.},
author = {Lee, Tuo-Yeong},
journal = {Mathematica Bohemica},
keywords = {multiplier; $C$-integral; $BV$ function; -integral; function},
language = {eng},
number = {2},
pages = {161-166},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Multipliers for generalized Riemann integrals in the real line},
url = {http://eudml.org/doc/249906},
volume = {131},
year = {2006},
}
TY - JOUR
AU - Lee, Tuo-Yeong
TI - Multipliers for generalized Riemann integrals in the real line
JO - Mathematica Bohemica
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 131
IS - 2
SP - 161
EP - 166
AB - We use an elementary method to prove that each $BV$ function is a multiplier for the $C$-integral.
LA - eng
KW - multiplier; $C$-integral; $BV$ function; -integral; function
UR - http://eudml.org/doc/249906
ER -
References
top- A new integral for the problem of primitives, Matematiche (Catania) 51 (1996 1997), 299–313. (Italian) (1996 1997) MR1488074
- 10.1006/jmaa.2000.7019, J. Math. Anal. Appl. 251 (2000), 479–487. (2000) Zbl0991.26004MR1794433DOI10.1006/jmaa.2000.7019
- 10.1112/S0024610700008905, J. London Math. Soc. 62 (2000), 117–126. (2000) MR1771855DOI10.1112/S0024610700008905
- 10.1007/s10587-004-6420-x, Czechoslovak Math. J. 54 (2004), 717–725. (2004) Zbl1080.26003MR2086728DOI10.1007/s10587-004-6420-x
- On the problem of nearly derivatives, Sci. Math. Jpn. 61 (2005), 299–311. (2005) Zbl1077.26005MR2123887
- A Riemann-type minimal integral for the classical problem of primitives, Rend. Istit. Mat. Univ. Trieste 34 (2002 2003), 143–153. (2002 2003) MR2013947
- The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Graduate Studies in Mathematics, AMS, 1994. (1994) Zbl0807.26004MR1288751
- The integral, An Easy Approach after Kurzweil and Henstock, Australian Mathematical Society Lecture Series 14, Cambridge University Press, 2000. MR1756319
- Differential and Integral Equations. Boundary Value Problems and Adjoints, D. Reidel Publishing Co., Dordrecht-Boston, Mass.-London, 1979. (1979) MR0542283
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.