Multipliers for generalized Riemann integrals in the real line

Tuo-Yeong Lee

Mathematica Bohemica (2006)

  • Volume: 131, Issue: 2, page 161-166
  • ISSN: 0862-7959

Abstract

top
We use an elementary method to prove that each B V function is a multiplier for the C -integral.

How to cite

top

Lee, Tuo-Yeong. "Multipliers for generalized Riemann integrals in the real line." Mathematica Bohemica 131.2 (2006): 161-166. <http://eudml.org/doc/249906>.

@article{Lee2006,
abstract = {We use an elementary method to prove that each $BV$ function is a multiplier for the $C$-integral.},
author = {Lee, Tuo-Yeong},
journal = {Mathematica Bohemica},
keywords = {multiplier; $C$-integral; $BV$ function; -integral; function},
language = {eng},
number = {2},
pages = {161-166},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Multipliers for generalized Riemann integrals in the real line},
url = {http://eudml.org/doc/249906},
volume = {131},
year = {2006},
}

TY - JOUR
AU - Lee, Tuo-Yeong
TI - Multipliers for generalized Riemann integrals in the real line
JO - Mathematica Bohemica
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 131
IS - 2
SP - 161
EP - 166
AB - We use an elementary method to prove that each $BV$ function is a multiplier for the $C$-integral.
LA - eng
KW - multiplier; $C$-integral; $BV$ function; -integral; function
UR - http://eudml.org/doc/249906
ER -

References

top
  1. A new integral for the problem of primitives, Matematiche (Catania) 51 (1996 1997), 299–313. (Italian) (1996 1997) MR1488074
  2. 10.1006/jmaa.2000.7019, J. Math. Anal. Appl. 251 (2000), 479–487. (2000) Zbl0991.26004MR1794433DOI10.1006/jmaa.2000.7019
  3. 10.1112/S0024610700008905, J. London Math. Soc. 62 (2000), 117–126. (2000) MR1771855DOI10.1112/S0024610700008905
  4. 10.1007/s10587-004-6420-x, Czechoslovak Math. J. 54 (2004), 717–725. (2004) Zbl1080.26003MR2086728DOI10.1007/s10587-004-6420-x
  5. On the problem of nearly derivatives, Sci. Math. Jpn. 61 (2005), 299–311. (2005) Zbl1077.26005MR2123887
  6. A Riemann-type minimal integral for the classical problem of primitives, Rend. Istit. Mat. Univ. Trieste 34 (2002 2003), 143–153. (2002 2003) MR2013947
  7. The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Graduate Studies in Mathematics, AMS, 1994. (1994) Zbl0807.26004MR1288751
  8. The integral, An Easy Approach after Kurzweil and Henstock, Australian Mathematical Society Lecture Series 14, Cambridge University Press, 2000. MR1756319
  9. Differential and Integral Equations. Boundary Value Problems and Adjoints, D. Reidel Publishing Co., Dordrecht-Boston, Mass.-London, 1979. (1979) MR0542283

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.