A multidimensional integration by parts formula for the Henstock-Kurzweil integral

Tuo-Yeong Lee

Mathematica Bohemica (2008)

  • Volume: 133, Issue: 1, page 63-74
  • ISSN: 0862-7959

Abstract

top
It is shown that if g is of bounded variation in the sense of Hardy-Krause on i = 1 m [ a i , b i ] , then g χ i = 1 m ( a i , b i ) is of bounded variation there. As a result, we obtain a simple proof of Kurzweil’s multidimensional integration by parts formula.

How to cite

top

Lee, Tuo-Yeong. "A multidimensional integration by parts formula for the Henstock-Kurzweil integral." Mathematica Bohemica 133.1 (2008): 63-74. <http://eudml.org/doc/32577>.

@article{Lee2008,
abstract = {It is shown that if $g$ is of bounded variation in the sense of Hardy-Krause on $\{\mathop \{\prod \}\limits _\{i=1\}^\{m\}\} [a_i, b_i]$, then $g \chi _\{ _\{\{\mathop \{\prod \}\limits _\{i=1\}^\{m\}\} (a_i, b_i)\}\}$ is of bounded variation there. As a result, we obtain a simple proof of Kurzweil’s multidimensional integration by parts formula.},
author = {Lee, Tuo-Yeong},
journal = {Mathematica Bohemica},
keywords = {Henstock-Kurzweil integral; bounded variation in the sense of Hardy-Krause; integration by parts; Henstock-Kurzweil integral; bounded variation in the sense of Hardy-Krause; integration by parts},
language = {eng},
number = {1},
pages = {63-74},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A multidimensional integration by parts formula for the Henstock-Kurzweil integral},
url = {http://eudml.org/doc/32577},
volume = {133},
year = {2008},
}

TY - JOUR
AU - Lee, Tuo-Yeong
TI - A multidimensional integration by parts formula for the Henstock-Kurzweil integral
JO - Mathematica Bohemica
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 133
IS - 1
SP - 63
EP - 74
AB - It is shown that if $g$ is of bounded variation in the sense of Hardy-Krause on ${\mathop {\prod }\limits _{i=1}^{m}} [a_i, b_i]$, then $g \chi _{ _{{\mathop {\prod }\limits _{i=1}^{m}} (a_i, b_i)}}$ is of bounded variation there. As a result, we obtain a simple proof of Kurzweil’s multidimensional integration by parts formula.
LA - eng
KW - Henstock-Kurzweil integral; bounded variation in the sense of Hardy-Krause; integration by parts; Henstock-Kurzweil integral; bounded variation in the sense of Hardy-Krause; integration by parts
UR - http://eudml.org/doc/32577
ER -

References

top
  1. On multiplication of Perron integrable functions, Czech. Math. J 23 (1973), 542–566. (1973) Zbl0269.26007MR0335705
  2. 10.1017/S0004972700021857, Bull. Austral. Math. Soc. 54 (1996), 441–449. (1996) MR1419607DOI10.1017/S0004972700021857
  3. Multipliers for some non-absolute integrals in the Euclidean spaces, Real Anal. Exchange 24 (1998/99), 149–160. (1998/99) MR1691742
  4. A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space, Proc. London Math. Soc. 87 (2003), 677–700. (2003) MR2005879
  5. 10.1216/rmjm/1181069805, Rocky Mountain J. Math. 34 (2004), 1353–1365. (2004) MR2095582DOI10.1216/rmjm/1181069805
  6. 10.1007/s10587-004-6415-7, Czech. Math. J. 54 (2004), 657–674. (2004) MR2086723DOI10.1007/s10587-004-6415-7
  7. 10.1017/S030500410500839X, Math. Proc. Cambridge Philos. Soc. 138 (2005), 487–492. (2005) MR2138575DOI10.1017/S030500410500839X
  8. 10.1007/s10587-005-0050-9, Czech. Math. J. 55 (2005), 625–637. (2005) MR2153087DOI10.1007/s10587-005-0050-9
  9. The Henstock variational measure, Baire functions and a problem of Henstock, Rocky Mountain J. Math. 35 (2005), 1981–1997. (2005) MR2210644
  10. 10.14321/realanalexch.30.1.0323, Real Anal. Exchange 30 (2004/2005), 323–328. (2004/2005) MR2127537DOI10.14321/realanalexch.30.1.0323
  11. 10.1016/j.jmaa.2005.10.045, J. Math. Anal. Appl. 323 (2006), 741–745. (2006) MR2262241DOI10.1016/j.jmaa.2005.10.045
  12. Multipliers for generalized Riemann integrals in the real line, Math. Bohem. 131 (2006), 161–166. (2006) MR2242842
  13. A Fubini’s theorem for generalized Riemann integrals, Preprint. 
  14. The dual of the Henstock-Kurzweil space, Real Anal. Exchange 22 (1996/97), 105–121. (1996/97) MR1433600
  15. An Introduction to the Theory of Real Functions, John Wiley & Sons, Ltd., Chichester, 1988. (1988) Zbl0653.26001MR0952856
  16. 10.1215/S0012-7094-41-00815-3, Duke Math. J. 8 (1941), 215–222. (1941) Zbl0025.15302MR0004285DOI10.1215/S0012-7094-41-00815-3
  17. The space of Henstock integrable functions II, New integrals, (P. S. Bullen, P. Y. Lee, J. L. Mawhin, P. Muldowney and W. F. Pfeffer, eds.), Lecture Notes in Math. 1419 (Springer, Berlin, Heideberg, New York, 1990), 136–149. MR1051926
  18. 10.1155/S0161171288000043, Internat. J. Math. and Math. Sci. 11 (1988), 15–22. (1988) Zbl0662.26003MR0918213DOI10.1155/S0161171288000043
  19. On multiple integration by parts and the second theorem of the mean, Proc. London Math. Soc. 16 (1918), 273–293. (1918) 
  20. On the discontinuities of monotone functions of several variables, Proc. London Math. Soc. 22 (1924), 124–142. (1924) MR1575698
  21. 10.4064/ap-21-1-85-96, Ann. Pol. Math. 21 (1968), 85–96. (1968) Zbl0174.08402MR0235731DOI10.4064/ap-21-1-85-96

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.