A multidimensional integration by parts formula for the Henstock-Kurzweil integral
Mathematica Bohemica (2008)
- Volume: 133, Issue: 1, page 63-74
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topLee, Tuo-Yeong. "A multidimensional integration by parts formula for the Henstock-Kurzweil integral." Mathematica Bohemica 133.1 (2008): 63-74. <http://eudml.org/doc/32577>.
@article{Lee2008,
abstract = {It is shown that if $g$ is of bounded variation in the sense of Hardy-Krause on $\{\mathop \{\prod \}\limits _\{i=1\}^\{m\}\} [a_i, b_i]$, then $g \chi _\{ _\{\{\mathop \{\prod \}\limits _\{i=1\}^\{m\}\} (a_i, b_i)\}\}$ is of bounded variation there. As a result, we obtain a simple proof of Kurzweil’s multidimensional integration by parts formula.},
author = {Lee, Tuo-Yeong},
journal = {Mathematica Bohemica},
keywords = {Henstock-Kurzweil integral; bounded variation in the sense of Hardy-Krause; integration by parts; Henstock-Kurzweil integral; bounded variation in the sense of Hardy-Krause; integration by parts},
language = {eng},
number = {1},
pages = {63-74},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A multidimensional integration by parts formula for the Henstock-Kurzweil integral},
url = {http://eudml.org/doc/32577},
volume = {133},
year = {2008},
}
TY - JOUR
AU - Lee, Tuo-Yeong
TI - A multidimensional integration by parts formula for the Henstock-Kurzweil integral
JO - Mathematica Bohemica
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 133
IS - 1
SP - 63
EP - 74
AB - It is shown that if $g$ is of bounded variation in the sense of Hardy-Krause on ${\mathop {\prod }\limits _{i=1}^{m}} [a_i, b_i]$, then $g \chi _{ _{{\mathop {\prod }\limits _{i=1}^{m}} (a_i, b_i)}}$ is of bounded variation there. As a result, we obtain a simple proof of Kurzweil’s multidimensional integration by parts formula.
LA - eng
KW - Henstock-Kurzweil integral; bounded variation in the sense of Hardy-Krause; integration by parts; Henstock-Kurzweil integral; bounded variation in the sense of Hardy-Krause; integration by parts
UR - http://eudml.org/doc/32577
ER -
References
top- On multiplication of Perron integrable functions, Czech. Math. J 23 (1973), 542–566. (1973) Zbl0269.26007MR0335705
- 10.1017/S0004972700021857, Bull. Austral. Math. Soc. 54 (1996), 441–449. (1996) MR1419607DOI10.1017/S0004972700021857
- Multipliers for some non-absolute integrals in the Euclidean spaces, Real Anal. Exchange 24 (1998/99), 149–160. (1998/99) MR1691742
- A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space, Proc. London Math. Soc. 87 (2003), 677–700. (2003) MR2005879
- 10.1216/rmjm/1181069805, Rocky Mountain J. Math. 34 (2004), 1353–1365. (2004) MR2095582DOI10.1216/rmjm/1181069805
- 10.1007/s10587-004-6415-7, Czech. Math. J. 54 (2004), 657–674. (2004) MR2086723DOI10.1007/s10587-004-6415-7
- 10.1017/S030500410500839X, Math. Proc. Cambridge Philos. Soc. 138 (2005), 487–492. (2005) MR2138575DOI10.1017/S030500410500839X
- 10.1007/s10587-005-0050-9, Czech. Math. J. 55 (2005), 625–637. (2005) MR2153087DOI10.1007/s10587-005-0050-9
- The Henstock variational measure, Baire functions and a problem of Henstock, Rocky Mountain J. Math. 35 (2005), 1981–1997. (2005) MR2210644
- 10.14321/realanalexch.30.1.0323, Real Anal. Exchange 30 (2004/2005), 323–328. (2004/2005) MR2127537DOI10.14321/realanalexch.30.1.0323
- 10.1016/j.jmaa.2005.10.045, J. Math. Anal. Appl. 323 (2006), 741–745. (2006) MR2262241DOI10.1016/j.jmaa.2005.10.045
- Multipliers for generalized Riemann integrals in the real line, Math. Bohem. 131 (2006), 161–166. (2006) MR2242842
- A Fubini’s theorem for generalized Riemann integrals, Preprint.
- The dual of the Henstock-Kurzweil space, Real Anal. Exchange 22 (1996/97), 105–121. (1996/97) MR1433600
- An Introduction to the Theory of Real Functions, John Wiley & Sons, Ltd., Chichester, 1988. (1988) Zbl0653.26001MR0952856
- 10.1215/S0012-7094-41-00815-3, Duke Math. J. 8 (1941), 215–222. (1941) Zbl0025.15302MR0004285DOI10.1215/S0012-7094-41-00815-3
- The space of Henstock integrable functions II, New integrals, (P. S. Bullen, P. Y. Lee, J. L. Mawhin, P. Muldowney and W. F. Pfeffer, eds.), Lecture Notes in Math. 1419 (Springer, Berlin, Heideberg, New York, 1990), 136–149. MR1051926
- 10.1155/S0161171288000043, Internat. J. Math. and Math. Sci. 11 (1988), 15–22. (1988) Zbl0662.26003MR0918213DOI10.1155/S0161171288000043
- On multiple integration by parts and the second theorem of the mean, Proc. London Math. Soc. 16 (1918), 273–293. (1918)
- On the discontinuities of monotone functions of several variables, Proc. London Math. Soc. 22 (1924), 124–142. (1924) MR1575698
- 10.4064/ap-21-1-85-96, Ann. Pol. Math. 21 (1968), 85–96. (1968) Zbl0174.08402MR0235731DOI10.4064/ap-21-1-85-96
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.