Semipermeable surfaces for non-smooth differential inclusions
Andrzej Leśniewski; Tadeusz Rzeżuchowski
Mathematica Bohemica (2006)
- Volume: 131, Issue: 3, page 261-278
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topLeśniewski, Andrzej, and Rzeżuchowski, Tadeusz. "Semipermeable surfaces for non-smooth differential inclusions." Mathematica Bohemica 131.3 (2006): 261-278. <http://eudml.org/doc/249907>.
@article{Leśniewski2006,
abstract = {We investigate the regularity of semipermeable surfaces along barrier solutions without the assumption of smoothness of the right-hand side of the differential inclusion. We check what can be said if the assumptions concern not the right-hand side itself but the cones it generates. We examine also the properties of families of sets with semipermeable boundaries.},
author = {Leśniewski, Andrzej, Rzeżuchowski, Tadeusz},
journal = {Mathematica Bohemica},
keywords = {differential inclusions; semipermeable surfaces; barrier solutions; barrier solution},
language = {eng},
number = {3},
pages = {261-278},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Semipermeable surfaces for non-smooth differential inclusions},
url = {http://eudml.org/doc/249907},
volume = {131},
year = {2006},
}
TY - JOUR
AU - Leśniewski, Andrzej
AU - Rzeżuchowski, Tadeusz
TI - Semipermeable surfaces for non-smooth differential inclusions
JO - Mathematica Bohemica
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 131
IS - 3
SP - 261
EP - 278
AB - We investigate the regularity of semipermeable surfaces along barrier solutions without the assumption of smoothness of the right-hand side of the differential inclusion. We check what can be said if the assumptions concern not the right-hand side itself but the cones it generates. We examine also the properties of families of sets with semipermeable boundaries.
LA - eng
KW - differential inclusions; semipermeable surfaces; barrier solutions; barrier solution
UR - http://eudml.org/doc/249907
ER -
References
top- Viability Theory, Birkhauser, Boston, 1991. (1991) Zbl0755.93003MR1134779
- Set-Valued Analysis, Birkhauser, Boston, 1990. (1990) MR1048347
- 10.1137/S0363012995287295, SIAM J. Control Optim. 35 (1997), 1638–1652. (1997) MR1466920DOI10.1137/S0363012995287295
- 10.1137/S0363012996312155, SIAM J. Control Optim. 35 (1997), 1653–1671. (1997) MR1466921DOI10.1137/S0363012996312155
- 10.1137/0331016, SIAM J. Control Optim. 31 (1993), 257–272. (1993) MR1200233DOI10.1137/0331016
- 10.1006/jdeq.1995.1036, J. Differ. Equations 116 (1995), 265–305. (1995) MR1318576DOI10.1006/jdeq.1995.1036
- Differential Games, John Wiley, New York, 1965. (1965) Zbl0125.38001MR0210469
- On conditions for right-hand sides of differential relations, Čas. pěst. mat. 102 (1977), 334–349. (1977) MR0466702
- Extension of a Scorza-Dragoni theorem to differential relations and functional-differential relations, Commentationes Mathematicae, Tomus specialis in honorem Ladislai Orlicz, I. Polish Scientific Publishers, Warsaw (1978), 147–158. (1978) MR0504159
- Sets of solutions of differential relations, Czechoslovak Math. J. 31 (1981), 554–568. (1981) MR0631602
- Integral of multivalued mappings and its connection with differential relations, Čas. pěst. mat. 108 (1983), 8–28. (1983) MR0694137
- Kneser’s theorem for multivalued differential delay equations, Čas. pěst. mat. 104 (1979), 1–8. (1979) MR0523570
- Autonomous differential inclusions sharing the families of trajectories, Accepted at Demonstratio Mathematica.
- 10.12775/TMNA.2002.027, Topol. Methods Nonlin. Anal. 20 (2002), 85–118. (2002) MR1940532DOI10.12775/TMNA.2002.027
- Continuous Selectors. Part I: Linear Selectors, J. Convex Anal. 5 (1998), 249–267. (1998) MR1670348
- 10.1137/0330020, SIAM J. Control Optim. 30 (1992), 324–335. (1992) Zbl0862.49006MR1149071DOI10.1137/0330020
- Scorza-Dragoni type theorem for upper semicontinuous multivalued functions, Bull. Acad. Polon. Sc., Sér. Sc. Math. Phys. 28 (1980), 61–66. (1980) Zbl0459.28007MR0616201
- 10.1023/A:1008682614694, Set-Valued Analysis 5 (1997), 181–193. (1997) MR1463930DOI10.1023/A:1008682614694
- On the set where all the solutions satisfy a differential inclusion, Qualitative Theory of Differential Equations, Szeged, 1979, pp. 903–913. (1979) MR0680625
- Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 1993. (1993) Zbl0798.52001MR1216521
- Un theorema sulle funzioni continue rispetto ad una e misurabili rispetto ad un’altra variabile, Rendiconti Sem. Mat. Padova 17 (1948), 102–106. (1948) MR0028385
- Una applicazione della quasi-continuità semiregolare delle funzioni misurabili rispetto ad una e continue rispetto ad un’altra variabile, Atti Acc. Naz. Lincei 12 (1952), 55–61. (1952) MR0047123
- Introduction to the Theory of Differential Inclusions, American Mathematical Society, Providence, Rhode Island, 2002. (2002) Zbl0992.34001MR1867542
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.