Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions

B. Bongiorno; Luisa Di Piazza; Kazimierz Musiał

Mathematica Bohemica (2006)

  • Volume: 131, Issue: 2, page 211-223
  • ISSN: 0862-7959

Abstract

top
We study the integrability of Banach valued strongly measurable functions defined on [ 0 , 1 ] . In case of functions f given by n = 1 x n χ E n , where x n belong to a Banach space and the sets E n are Lebesgue measurable and pairwise disjoint subsets of [ 0 , 1 ] , there are well known characterizations for the Bochner and for the Pettis integrability of f (cf Musial (1991)). In this paper we give some conditions for the Kurzweil-Henstock and the Kurzweil-Henstock-Pettis integrability of such functions.

How to cite

top

Bongiorno, B., Di Piazza, Luisa, and Musiał, Kazimierz. "Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions." Mathematica Bohemica 131.2 (2006): 211-223. <http://eudml.org/doc/249908>.

@article{Bongiorno2006,
abstract = {We study the integrability of Banach valued strongly measurable functions defined on $[0,1]$. In case of functions $f$ given by $\sum _\{n=1\}^\{\infty \} x_n\chi _\{E_n\}$, where $x_n $ belong to a Banach space and the sets $E_n$ are Lebesgue measurable and pairwise disjoint subsets of $[0,1]$, there are well known characterizations for the Bochner and for the Pettis integrability of $f$ (cf Musial (1991)). In this paper we give some conditions for the Kurzweil-Henstock and the Kurzweil-Henstock-Pettis integrability of such functions.},
author = {Bongiorno, B., Di Piazza, Luisa, Musiał, Kazimierz},
journal = {Mathematica Bohemica},
keywords = {Kurzweil-Henstock integral; Kurzweil-Henstock-Pettis integral; Pettis integral; Pettis integral},
language = {eng},
number = {2},
pages = {211-223},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions},
url = {http://eudml.org/doc/249908},
volume = {131},
year = {2006},
}

TY - JOUR
AU - Bongiorno, B.
AU - Di Piazza, Luisa
AU - Musiał, Kazimierz
TI - Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions
JO - Mathematica Bohemica
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 131
IS - 2
SP - 211
EP - 223
AB - We study the integrability of Banach valued strongly measurable functions defined on $[0,1]$. In case of functions $f$ given by $\sum _{n=1}^{\infty } x_n\chi _{E_n}$, where $x_n $ belong to a Banach space and the sets $E_n$ are Lebesgue measurable and pairwise disjoint subsets of $[0,1]$, there are well known characterizations for the Bochner and for the Pettis integrability of $f$ (cf Musial (1991)). In this paper we give some conditions for the Kurzweil-Henstock and the Kurzweil-Henstock-Pettis integrability of such functions.
LA - eng
KW - Kurzweil-Henstock integral; Kurzweil-Henstock-Pettis integral; Pettis integral; Pettis integral
UR - http://eudml.org/doc/249908
ER -

References

top
  1. 10.4064/cm-1-4-289-293, Coll. Math. 1 (1948), 289–293. (1948) Zbl0037.32302MR0030120DOI10.4064/cm-1-4-289-293
  2. The Henstock-Kurzweil integral, Handbook of Measure Theory I, E. Pap ed., Elsevier Amsterdam, 2002, pp. 587–615. (2002) Zbl1024.26004MR1954623
  3. Vector measures, Math. Surveys, vol. 15, AMS, Providence, R.I., 1977. (1977) MR0453964
  4. 10.1215/ijm/1255986726, Illinois J. Math. 38 (1994), 471–479. (1994) Zbl0797.28006MR1269699DOI10.1215/ijm/1255986726
  5. On Denjoy-Dunford and Denjoy-Pettis integrals, Studia Math. 130 (1998), 115–133. (1998) MR1623348
  6. Lanzhou Lectures on Henstock Integration, World Scientific, Singapore, 1989. (1989) Zbl0699.26004MR1050957
  7. Topics in the theory of Pettis integration, Rend. Istit. Mat. Univ. Trieste 23 (1991), 177–262. (1991) Zbl0798.46042MR1248654
  8. Norm convergence and uniform integrability for the Kurzweil-Henstock integral, Real Anal. Exchange 24 (1998/99), 423–426. (1998/99) MR1691761

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.