Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions
B. Bongiorno; Luisa Di Piazza; Kazimierz Musiał
Mathematica Bohemica (2006)
- Volume: 131, Issue: 2, page 211-223
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBongiorno, B., Di Piazza, Luisa, and Musiał, Kazimierz. "Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions." Mathematica Bohemica 131.2 (2006): 211-223. <http://eudml.org/doc/249908>.
@article{Bongiorno2006,
abstract = {We study the integrability of Banach valued strongly measurable functions defined on $[0,1]$. In case of functions $f$ given by $\sum _\{n=1\}^\{\infty \} x_n\chi _\{E_n\}$, where $x_n $ belong to a Banach space and the sets $E_n$ are Lebesgue measurable and pairwise disjoint subsets of $[0,1]$, there are well known characterizations for the Bochner and for the Pettis integrability of $f$ (cf Musial (1991)). In this paper we give some conditions for the Kurzweil-Henstock and the Kurzweil-Henstock-Pettis integrability of such functions.},
author = {Bongiorno, B., Di Piazza, Luisa, Musiał, Kazimierz},
journal = {Mathematica Bohemica},
keywords = {Kurzweil-Henstock integral; Kurzweil-Henstock-Pettis integral; Pettis integral; Pettis integral},
language = {eng},
number = {2},
pages = {211-223},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions},
url = {http://eudml.org/doc/249908},
volume = {131},
year = {2006},
}
TY - JOUR
AU - Bongiorno, B.
AU - Di Piazza, Luisa
AU - Musiał, Kazimierz
TI - Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions
JO - Mathematica Bohemica
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 131
IS - 2
SP - 211
EP - 223
AB - We study the integrability of Banach valued strongly measurable functions defined on $[0,1]$. In case of functions $f$ given by $\sum _{n=1}^{\infty } x_n\chi _{E_n}$, where $x_n $ belong to a Banach space and the sets $E_n$ are Lebesgue measurable and pairwise disjoint subsets of $[0,1]$, there are well known characterizations for the Bochner and for the Pettis integrability of $f$ (cf Musial (1991)). In this paper we give some conditions for the Kurzweil-Henstock and the Kurzweil-Henstock-Pettis integrability of such functions.
LA - eng
KW - Kurzweil-Henstock integral; Kurzweil-Henstock-Pettis integral; Pettis integral; Pettis integral
UR - http://eudml.org/doc/249908
ER -
References
top- 10.4064/cm-1-4-289-293, Coll. Math. 1 (1948), 289–293. (1948) Zbl0037.32302MR0030120DOI10.4064/cm-1-4-289-293
- The Henstock-Kurzweil integral, Handbook of Measure Theory I, E. Pap ed., Elsevier Amsterdam, 2002, pp. 587–615. (2002) Zbl1024.26004MR1954623
- Vector measures, Math. Surveys, vol. 15, AMS, Providence, R.I., 1977. (1977) MR0453964
- 10.1215/ijm/1255986726, Illinois J. Math. 38 (1994), 471–479. (1994) Zbl0797.28006MR1269699DOI10.1215/ijm/1255986726
- On Denjoy-Dunford and Denjoy-Pettis integrals, Studia Math. 130 (1998), 115–133. (1998) MR1623348
- Lanzhou Lectures on Henstock Integration, World Scientific, Singapore, 1989. (1989) Zbl0699.26004MR1050957
- Topics in the theory of Pettis integration, Rend. Istit. Mat. Univ. Trieste 23 (1991), 177–262. (1991) Zbl0798.46042MR1248654
- Norm convergence and uniform integrability for the Kurzweil-Henstock integral, Real Anal. Exchange 24 (1998/99), 423–426. (1998/99) MR1691761
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.