On Denjoy-Dunford and Denjoy-Pettis integrals
Studia Mathematica (1998)
- Volume: 130, Issue: 2, page 115-133
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topGámez, José, and Mendoza, José. "On Denjoy-Dunford and Denjoy-Pettis integrals." Studia Mathematica 130.2 (1998): 115-133. <http://eudml.org/doc/216547>.
@article{Gámez1998,
abstract = {The two main results of this paper are the following: (a) If X is a Banach space and f : [a,b] → X is a function such that x*f is Denjoy integrable for all x* ∈ X*, then f is Denjoy-Dunford integrable, and (b) There exists a Dunford integrable function $f : [a,b] → c_0$ which is not Pettis integrable on any subinterval in [a,b], while $ʃ_J f$ belongs to $c_0$ for every subinterval J in [a,b]. These results provide answers to two open problems left by R. A. Gordon in [4]. Some other questions in connection with Denjoy-Dundord and Denjoy-Pettis integrals are studied.},
author = {Gámez, José, Mendoza, José},
journal = {Studia Mathematica},
keywords = {Banach-valued functions; Denjoy-Dunford integrals; Denjoy-Pettis integrals},
language = {eng},
number = {2},
pages = {115-133},
title = {On Denjoy-Dunford and Denjoy-Pettis integrals},
url = {http://eudml.org/doc/216547},
volume = {130},
year = {1998},
}
TY - JOUR
AU - Gámez, José
AU - Mendoza, José
TI - On Denjoy-Dunford and Denjoy-Pettis integrals
JO - Studia Mathematica
PY - 1998
VL - 130
IS - 2
SP - 115
EP - 133
AB - The two main results of this paper are the following: (a) If X is a Banach space and f : [a,b] → X is a function such that x*f is Denjoy integrable for all x* ∈ X*, then f is Denjoy-Dunford integrable, and (b) There exists a Dunford integrable function $f : [a,b] → c_0$ which is not Pettis integrable on any subinterval in [a,b], while $ʃ_J f$ belongs to $c_0$ for every subinterval J in [a,b]. These results provide answers to two open problems left by R. A. Gordon in [4]. Some other questions in connection with Denjoy-Dundord and Denjoy-Pettis integrals are studied.
LA - eng
KW - Banach-valued functions; Denjoy-Dunford integrals; Denjoy-Pettis integrals
UR - http://eudml.org/doc/216547
ER -
References
top- [1] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, 1984.
- [2] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
- [3] N. Dunford and J. T. Schwartz, Linear Operators, part I, Interscience, New York, 1958.
- [4] R. A. Gordon, The Denjoy extension of the Bochner, Pettis, and Dunford integrals, Studia Math. 92 (1989), 73-91. Zbl0681.28006
- [5] R. A. Gordon, The integrals of Lebesque, Denjoy, Perron and Henstock, Grad. Stud. Math. 4, Amer. Math. Soc., Providence, 1994. Zbl0807.26004
- [6] J. Lindenstrauss and L.Tzafriri, Classical Banach Spaces I, Springer, 1977. Zbl0362.46013
- [7] S. Saks, Theory of the Integral, 2nd revised ed., Hafner, New York, 1937.
Citations in EuDML Documents
top- B. Bongiorno, Luisa Di Piazza, Kazimierz Musiał, Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions
- Kirill Naralenkov, On Denjoy type extensions of the Pettis integral
- Bianca Satco, Volterra integral inclusions via Henstock-Kurzweil-Pettis integral
- Bianca Satco, A Komlós-type theorem for the set-valued Henstock-Kurzweil-Pettis integral and applications
- Afif Ben Amar, Some fixed point theorems and existence of weak solutions of Volterra integral equation under Henstock-Kurzweil-Pettis integrability
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.