A generalization of Scholz’s reciprocity law
Mark Budden[1]; Jeremiah Eisenmenger[2]; Jonathan Kish[3]
- [1] Department of Mathematics Armstrong Atlantic State University 11935 Abercorn St. Savannah, GA USA 31419
- [2] Department of Mathematics University of Florida PO Box 118105 Gainesville, FL USA 32611-8105
- [3] Department of Mathematics University of Colorado at Boulder Boulder, CO USA 80309
Journal de Théorie des Nombres de Bordeaux (2007)
- Volume: 19, Issue: 3, page 583-594
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBudden, Mark, Eisenmenger, Jeremiah, and Kish, Jonathan. "A generalization of Scholz’s reciprocity law." Journal de Théorie des Nombres de Bordeaux 19.3 (2007): 583-594. <http://eudml.org/doc/249921>.
@article{Budden2007,
abstract = {We provide a generalization of Scholz’s reciprocity law using the subfields $K_\{2^\{t-1\}\}$ and $K_\{2^t\}$ of $\mathbb\{Q\}(\zeta _p )$, of degrees $2^\{t-1\}$ and $2^\{t\}$ over $\mathbb\{Q\}$, respectively. The proof requires a particular choice of primitive element for $K_\{2^t\}$ over $K_\{2^\{t-1\}\}$ and is based upon the splitting of the cyclotomic polynomial $\Phi _p (x)$ over the subfields.},
affiliation = {Department of Mathematics Armstrong Atlantic State University 11935 Abercorn St. Savannah, GA USA 31419; Department of Mathematics University of Florida PO Box 118105 Gainesville, FL USA 32611-8105; Department of Mathematics University of Colorado at Boulder Boulder, CO USA 80309},
author = {Budden, Mark, Eisenmenger, Jeremiah, Kish, Jonathan},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Scholz' reciprocity law; rational reciprocity laws; cyclotomic number fields},
language = {eng},
number = {3},
pages = {583-594},
publisher = {Université Bordeaux 1},
title = {A generalization of Scholz’s reciprocity law},
url = {http://eudml.org/doc/249921},
volume = {19},
year = {2007},
}
TY - JOUR
AU - Budden, Mark
AU - Eisenmenger, Jeremiah
AU - Kish, Jonathan
TI - A generalization of Scholz’s reciprocity law
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 3
SP - 583
EP - 594
AB - We provide a generalization of Scholz’s reciprocity law using the subfields $K_{2^{t-1}}$ and $K_{2^t}$ of $\mathbb{Q}(\zeta _p )$, of degrees $2^{t-1}$ and $2^{t}$ over $\mathbb{Q}$, respectively. The proof requires a particular choice of primitive element for $K_{2^t}$ over $K_{2^{t-1}}$ and is based upon the splitting of the cyclotomic polynomial $\Phi _p (x)$ over the subfields.
LA - eng
KW - Scholz' reciprocity law; rational reciprocity laws; cyclotomic number fields
UR - http://eudml.org/doc/249921
ER -
References
top- D. Buell and K. Williams, Is There an Octic Reciprocity Law of Scholz Type?. Amer. Math. Monthly 85 (1978), 483–484. Zbl0383.10004MR545588
- D. Buell and K. Williams, An Octic Reciprocity Law of Scholz Type. Proc. Amer. Math. Soc. 77 (1979), 315–318. Zbl0417.10002MR545588
- D. Estes and G. Pall, Spinor Genera of Binary Quadratic Forms. J. Number Theory 5 (1973), 421–432. Zbl0268.10010MR332653
- R. Evans, Residuacity of Primes. Rocky Mountain J. of Math. 19 (1989), 1069–1081. Zbl0699.10012MR1039544
- K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory. edition, Graduate Texts in Mathematics 84, Springer-Verlag, 1990. Zbl0712.11001MR1070716
- G. Janusz, Algebraic Number Fields. ed., Graduate Studies in Mathematics 7, American Mathematical Society, Providence, RI, 1996. Zbl0854.11001MR1362545
- E. Lehmer, On the Quadratic Character of some Quadratic Surds. J. Reine Angew. Math. 250 (1971), 42–48. Zbl0222.12007MR286777
- E. Lehmer, Generalizations of Gauss’ Lemma. Number Theory and Algebra, Academic Press, New York, 1977, 187–194. Zbl0382.10003
- E. Lehmer, Rational Reciprocity Laws. Amer. Math. Monthly 85 (1978), 467–472. Zbl0383.10003MR498352
- F. Lemmermeyer, Rational Quartic Reciprocity. Acta Arith. 67 (1994), 387–390. Zbl0833.11049MR1301826
- F. Lemmermeyer, Reciprocity Laws. Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. Zbl0949.11002MR1761696
- A. Scholz, Über die Lösbarkeit der Gleichung . Math. Z. 39 (1934), 95–111. Zbl0009.29402
- T. Schönemann, Theorie der Symmetrischen Functionen der Wurzeln einer Gleichung. Allgemeine Sätze über Congruenzen nebst einigen Anwendungen derselben. J. Reine Angew. Math. 19 (1839), 289–308.
- K. Williams, On Scholz’s Reciprocity Law. Proc. Amer. Math. Soc. 64 No. 1 (1977), 45–46. Zbl0372.12004
- K. Williams, K. Hardy, and C. Friesen, On the Evaluation of the Legendre Symbol . Acta Arith. 45 (1985), 255–272. Zbl0524.10002MR808025
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.