A generalization of Scholz’s reciprocity law
Mark Budden[1]; Jeremiah Eisenmenger[2]; Jonathan Kish[3]
- [1] Department of Mathematics Armstrong Atlantic State University 11935 Abercorn St. Savannah, GA USA 31419
- [2] Department of Mathematics University of Florida PO Box 118105 Gainesville, FL USA 32611-8105
- [3] Department of Mathematics University of Colorado at Boulder Boulder, CO USA 80309
Journal de Théorie des Nombres de Bordeaux (2007)
- Volume: 19, Issue: 3, page 583-594
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- D. Buell and K. Williams, Is There an Octic Reciprocity Law of Scholz Type?. Amer. Math. Monthly 85 (1978), 483–484. Zbl0383.10004MR545588
- D. Buell and K. Williams, An Octic Reciprocity Law of Scholz Type. Proc. Amer. Math. Soc. 77 (1979), 315–318. Zbl0417.10002MR545588
- D. Estes and G. Pall, Spinor Genera of Binary Quadratic Forms. J. Number Theory 5 (1973), 421–432. Zbl0268.10010MR332653
- R. Evans, Residuacity of Primes. Rocky Mountain J. of Math. 19 (1989), 1069–1081. Zbl0699.10012MR1039544
- K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory. edition, Graduate Texts in Mathematics 84, Springer-Verlag, 1990. Zbl0712.11001MR1070716
- G. Janusz, Algebraic Number Fields. ed., Graduate Studies in Mathematics 7, American Mathematical Society, Providence, RI, 1996. Zbl0854.11001MR1362545
- E. Lehmer, On the Quadratic Character of some Quadratic Surds. J. Reine Angew. Math. 250 (1971), 42–48. Zbl0222.12007MR286777
- E. Lehmer, Generalizations of Gauss’ Lemma. Number Theory and Algebra, Academic Press, New York, 1977, 187–194. Zbl0382.10003
- E. Lehmer, Rational Reciprocity Laws. Amer. Math. Monthly 85 (1978), 467–472. Zbl0383.10003MR498352
- F. Lemmermeyer, Rational Quartic Reciprocity. Acta Arith. 67 (1994), 387–390. Zbl0833.11049MR1301826
- F. Lemmermeyer, Reciprocity Laws. Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. Zbl0949.11002MR1761696
- A. Scholz, Über die Lösbarkeit der Gleichung . Math. Z. 39 (1934), 95–111. Zbl0009.29402
- T. Schönemann, Theorie der Symmetrischen Functionen der Wurzeln einer Gleichung. Allgemeine Sätze über Congruenzen nebst einigen Anwendungen derselben. J. Reine Angew. Math. 19 (1839), 289–308.
- K. Williams, On Scholz’s Reciprocity Law. Proc. Amer. Math. Soc. 64 No. 1 (1977), 45–46. Zbl0372.12004
- K. Williams, K. Hardy, and C. Friesen, On the Evaluation of the Legendre Symbol . Acta Arith. 45 (1985), 255–272. Zbl0524.10002MR808025