On wild ramification in quaternion extensions

G. Griffith Elder[1]; Jeffrey J. Hooper[2]

  • [1] Department of Mathematics Virginia Tech Blacksburg, VA 24061-0123 U.S.A.
  • [2] Department of Mathematics and Statistics Acadia University Wolfville, NS B4P 2R6 Canada

Journal de Théorie des Nombres de Bordeaux (2007)

  • Volume: 19, Issue: 1, page 101-124
  • ISSN: 1246-7405

Abstract

top
This paper provides a complete catalog of the break numbers that occur in the ramification filtration of fully and thus wildly ramified quaternion extensions of dyadic number fields which contain - 1 (along with some partial results for the more general case). This catalog depends upon the refined ramification filtration, which as defined in [2] is associated with the biquadratic subfield. Moreover we find that quaternion counter-examples to the conclusion of the Hasse-Arf Theorem are extremely rare and can occur only when the refined ramification filtration is, in two different ways, extreme.

How to cite

top

Elder, G. Griffith, and Hooper, Jeffrey J.. "On wild ramification in quaternion extensions." Journal de Théorie des Nombres de Bordeaux 19.1 (2007): 101-124. <http://eudml.org/doc/249946>.

@article{Elder2007,
abstract = {This paper provides a complete catalog of the break numbers that occur in the ramification filtration of fully and thus wildly ramified quaternion extensions of dyadic number fields which contain $\sqrt\{-1\}$ (along with some partial results for the more general case). This catalog depends upon the refined ramification filtration, which as defined in [2] is associated with the biquadratic subfield. Moreover we find that quaternion counter-examples to the conclusion of the Hasse-Arf Theorem are extremely rare and can occur only when the refined ramification filtration is, in two different ways, extreme.},
affiliation = {Department of Mathematics Virginia Tech Blacksburg, VA 24061-0123 U.S.A.; Department of Mathematics and Statistics Acadia University Wolfville, NS B4P 2R6 Canada},
author = {Elder, G. Griffith, Hooper, Jeffrey J.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {ramification jumps; biquadratic extensions; quaternion extensions},
language = {eng},
number = {1},
pages = {101-124},
publisher = {Université Bordeaux 1},
title = {On wild ramification in quaternion extensions},
url = {http://eudml.org/doc/249946},
volume = {19},
year = {2007},
}

TY - JOUR
AU - Elder, G. Griffith
AU - Hooper, Jeffrey J.
TI - On wild ramification in quaternion extensions
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 1
SP - 101
EP - 124
AB - This paper provides a complete catalog of the break numbers that occur in the ramification filtration of fully and thus wildly ramified quaternion extensions of dyadic number fields which contain $\sqrt{-1}$ (along with some partial results for the more general case). This catalog depends upon the refined ramification filtration, which as defined in [2] is associated with the biquadratic subfield. Moreover we find that quaternion counter-examples to the conclusion of the Hasse-Arf Theorem are extremely rare and can occur only when the refined ramification filtration is, in two different ways, extreme.
LA - eng
KW - ramification jumps; biquadratic extensions; quaternion extensions
UR - http://eudml.org/doc/249946
ER -

References

top
  1. N. P. Byott, G. G. Elder, Biquadratic extensions with one break. Canadian Math. Bull. 45 (2002) no. 2, 168–179. Zbl1033.11054MR1904081
  2. N. P. Byott, G. G. Elder, New ramification breaks and additive Galois structure. J. Théor. Nombres Bordeaux 17 (2005) no. 1, 87–07, Les XXIIIémes Journées Arithmetiques (Graz, 2003). Zbl1162.11394MR2152213
  3. G. G. Elder, Galois module structure in wildly ramified cyclic extensions of degree p 2 . Ann. Inst. Fourier (Grenoble) 45 (1995) no. 3, 625–647. errata ibid.48 (1998) no. 2, 609–610. Zbl0820.11070
  4. G. G. Elder, Galois module structure of ambiguous ideals in biquadratic extensions. Canad. J. Math. 50 (1998), no. 5, 1007–1047. Zbl1015.11056MR1650942
  5. G. G. Elder, The Galois structure of ambiguous ideals in cyclic extensions of degree 8. Noncommutative algebra and geometry, 63–89, Lect. Notes Pure Appl. Math., 243, Chapman & Hall/CRC, Boca Raton, FL, 2006. Zbl1102.11062MR2189987
  6. I. B. Fesenko, S. V. Vostokov, Local fields and their extensions. Trans. of Math. Monographs, 121, 2nd Ed., American Mathematical Society, Providence, RI, 2002. Zbl1156.11046MR1915966
  7. J.-M.  Fontaine, Groupes de ramification et représentations d’Artin. Ann. Sci. École Norm. Sup. (4) 4 (1971), 337–392. Zbl0232.12006
  8. A. Fröhlich, Galois module structure of algebraic integers. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 1, Springer-Verlag, Berlin, 1983. Zbl0501.12012MR717033
  9. H. Hasse, Number theory. Classics in Mathematics, Springer-Verlag, Berlin, 2002, Reprint of 1980 English ed. Edited with a preface by H. G. Zimmer. Zbl0991.11001MR1885791
  10. C. U. Jensen, N. Yui, Quaternion extensions. Algebraic geometry and commutative algebra, Vol. I, Kinokuniya, Tokyo, 1988, pp. 155–182. Zbl0691.12011MR977759
  11. O. T. O’Meara, Introduction to quadratic forms. Springer-Verlag, New York, 1971. Zbl0207.05304
  12. H. Reichardt, Über normalkörper mit quaternionengruppe. Math. Z. 41 (1936), 218–221. Zbl62.0169.02MR1545614
  13. J.-P. Serre, Local Fields. Springer-Verlag, New York, 1979. Zbl0423.12016MR554237
  14. E. Witt, Konstruktion von galoisschen körpern der characteristik p zu vorgegebener gruppe der ordnung p f . J. Reine Angew. Math. 174 (1936), 237–245. Zbl0013.19601
  15. B. Wyman, Wildly ramified gamma extensions. Amer. J. Math. 91 (1969), 135–152. Zbl0188.11003MR241386

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.