On wild ramification in quaternion extensions
G. Griffith Elder[1]; Jeffrey J. Hooper[2]
- [1] Department of Mathematics Virginia Tech Blacksburg, VA 24061-0123 U.S.A.
- [2] Department of Mathematics and Statistics Acadia University Wolfville, NS B4P 2R6 Canada
Journal de Théorie des Nombres de Bordeaux (2007)
- Volume: 19, Issue: 1, page 101-124
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topElder, G. Griffith, and Hooper, Jeffrey J.. "On wild ramification in quaternion extensions." Journal de Théorie des Nombres de Bordeaux 19.1 (2007): 101-124. <http://eudml.org/doc/249946>.
@article{Elder2007,
abstract = {This paper provides a complete catalog of the break numbers that occur in the ramification filtration of fully and thus wildly ramified quaternion extensions of dyadic number fields which contain $\sqrt\{-1\}$ (along with some partial results for the more general case). This catalog depends upon the refined ramification filtration, which as defined in [2] is associated with the biquadratic subfield. Moreover we find that quaternion counter-examples to the conclusion of the Hasse-Arf Theorem are extremely rare and can occur only when the refined ramification filtration is, in two different ways, extreme.},
affiliation = {Department of Mathematics Virginia Tech Blacksburg, VA 24061-0123 U.S.A.; Department of Mathematics and Statistics Acadia University Wolfville, NS B4P 2R6 Canada},
author = {Elder, G. Griffith, Hooper, Jeffrey J.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {ramification jumps; biquadratic extensions; quaternion extensions},
language = {eng},
number = {1},
pages = {101-124},
publisher = {Université Bordeaux 1},
title = {On wild ramification in quaternion extensions},
url = {http://eudml.org/doc/249946},
volume = {19},
year = {2007},
}
TY - JOUR
AU - Elder, G. Griffith
AU - Hooper, Jeffrey J.
TI - On wild ramification in quaternion extensions
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 1
SP - 101
EP - 124
AB - This paper provides a complete catalog of the break numbers that occur in the ramification filtration of fully and thus wildly ramified quaternion extensions of dyadic number fields which contain $\sqrt{-1}$ (along with some partial results for the more general case). This catalog depends upon the refined ramification filtration, which as defined in [2] is associated with the biquadratic subfield. Moreover we find that quaternion counter-examples to the conclusion of the Hasse-Arf Theorem are extremely rare and can occur only when the refined ramification filtration is, in two different ways, extreme.
LA - eng
KW - ramification jumps; biquadratic extensions; quaternion extensions
UR - http://eudml.org/doc/249946
ER -
References
top- N. P. Byott, G. G. Elder, Biquadratic extensions with one break. Canadian Math. Bull. 45 (2002) no. 2, 168–179. Zbl1033.11054MR1904081
- N. P. Byott, G. G. Elder, New ramification breaks and additive Galois structure. J. Théor. Nombres Bordeaux 17 (2005) no. 1, 87–07, Les XXIIIémes Journées Arithmetiques (Graz, 2003). Zbl1162.11394MR2152213
- G. G. Elder, Galois module structure in wildly ramified cyclic extensions of degree . Ann. Inst. Fourier (Grenoble) 45 (1995) no. 3, 625–647. errata ibid.48 (1998) no. 2, 609–610. Zbl0820.11070
- G. G. Elder, Galois module structure of ambiguous ideals in biquadratic extensions. Canad. J. Math. 50 (1998), no. 5, 1007–1047. Zbl1015.11056MR1650942
- G. G. Elder, The Galois structure of ambiguous ideals in cyclic extensions of degree 8. Noncommutative algebra and geometry, 63–89, Lect. Notes Pure Appl. Math., 243, Chapman & Hall/CRC, Boca Raton, FL, 2006. Zbl1102.11062MR2189987
- I. B. Fesenko, S. V. Vostokov, Local fields and their extensions. Trans. of Math. Monographs, 121, 2nd Ed., American Mathematical Society, Providence, RI, 2002. Zbl1156.11046MR1915966
- J.-M. Fontaine, Groupes de ramification et représentations d’Artin. Ann. Sci. École Norm. Sup. (4) 4 (1971), 337–392. Zbl0232.12006
- A. Fröhlich, Galois module structure of algebraic integers. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 1, Springer-Verlag, Berlin, 1983. Zbl0501.12012MR717033
- H. Hasse, Number theory. Classics in Mathematics, Springer-Verlag, Berlin, 2002, Reprint of 1980 English ed. Edited with a preface by H. G. Zimmer. Zbl0991.11001MR1885791
- C. U. Jensen, N. Yui, Quaternion extensions. Algebraic geometry and commutative algebra, Vol. I, Kinokuniya, Tokyo, 1988, pp. 155–182. Zbl0691.12011MR977759
- O. T. O’Meara, Introduction to quadratic forms. Springer-Verlag, New York, 1971. Zbl0207.05304
- H. Reichardt, Über normalkörper mit quaternionengruppe. Math. Z. 41 (1936), 218–221. Zbl62.0169.02MR1545614
- J.-P. Serre, Local Fields. Springer-Verlag, New York, 1979. Zbl0423.12016MR554237
- E. Witt, Konstruktion von galoisschen körpern der characteristik zu vorgegebener gruppe der ordnung . J. Reine Angew. Math. 174 (1936), 237–245. Zbl0013.19601
- B. Wyman, Wildly ramified gamma extensions. Amer. J. Math. 91 (1969), 135–152. Zbl0188.11003MR241386
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.