Galois module structure of ideals in wildly ramified cyclic extensions of degree
Annales de l'institut Fourier (1995)
- Volume: 45, Issue: 3, page 625-647
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topElder, Gove Griffith. "Galois module structure of ideals in wildly ramified cyclic extensions of degree $p^2$." Annales de l'institut Fourier 45.3 (1995): 625-647. <http://eudml.org/doc/75132>.
@article{Elder1995,
abstract = {For $L/K$, any totally ramified cyclic extension of degree $p^2$ of local fields which are finite extensions of the field of $p$-adic numbers, we describe the $\{\Bbb Z\}_p[\{\rm Gal\}(L/K)]$-module structure of each fractional ideal of $L$ explicitly in terms of the $4p+1$ indecomposable $\{\Bbb Z\}_p[\{\rm Gal\}(L/K)]$-modules classified by Heller and Reiner. The exponents are determined only by the invariants of ramification.},
author = {Elder, Gove Griffith},
journal = {Annales de l'institut Fourier},
keywords = {Galois module structure; wild ramification; local number field; integral representation; finite representation type},
language = {eng},
number = {3},
pages = {625-647},
publisher = {Association des Annales de l'Institut Fourier},
title = {Galois module structure of ideals in wildly ramified cyclic extensions of degree $p^2$},
url = {http://eudml.org/doc/75132},
volume = {45},
year = {1995},
}
TY - JOUR
AU - Elder, Gove Griffith
TI - Galois module structure of ideals in wildly ramified cyclic extensions of degree $p^2$
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 3
SP - 625
EP - 647
AB - For $L/K$, any totally ramified cyclic extension of degree $p^2$ of local fields which are finite extensions of the field of $p$-adic numbers, we describe the ${\Bbb Z}_p[{\rm Gal}(L/K)]$-module structure of each fractional ideal of $L$ explicitly in terms of the $4p+1$ indecomposable ${\Bbb Z}_p[{\rm Gal}(L/K)]$-modules classified by Heller and Reiner. The exponents are determined only by the invariants of ramification.
LA - eng
KW - Galois module structure; wild ramification; local number field; integral representation; finite representation type
UR - http://eudml.org/doc/75132
ER -
References
top- [1] A.-M. BERGÉ, Sur l'arithmétique d'une extension cyclique totalement ramifiée d'un corps local, C. R. Acad. Sc. Paris, 281 (1975), 67-70. Zbl0306.12009MR54 #2625
- [2] F. BERTRANDIAS, Sur les extensions cycliques de degré pn d'un corps local, Acta Arith., 34-4 (1979), 361-377. Zbl0381.12008MR80k:12022
- [3] F. BERTRANDIAS, J.-P. BERTRANDIAS, M.-J. FERTON, Sur l'anneau des entiers d'une extension cyclique de degré premier d'un corps local, C. R. Acad. Sc. Paris, 274 (1972), 1388-1391. Zbl0235.12008MR45 #5109
- [4] N BYOTT, On Galois isomorphisms between ideals in extensions of local fields, Manuscripta Math., 73 (1991), 289-311. Zbl0771.11047MR92g:11115
- [5] C. W. CURTIS, and I. REINER, Methods of Representation Theory, Wiley, New York, 1981. Zbl0469.20001
- [6] G. G. ELDER, and M. L. MADAN, Galois module structure of integers in wildly ramified cyclic extensions, J. Number Theory, 47 #2 (1994), 138-174. Zbl0801.11046MR95e:11125
- [7] M.-J. FERTON, Sur L'anneau des entiers de certaines extensions cycliques d'un corps local, Astérisque, 24-25 (1975), 21-28. Zbl0306.12008MR51 #10305
- [8] A. FRÖHLICH, Galois Module Structure of Algebraic Integers, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 Folge, Bd. 1, Springer-Verlag, Berlin-Heidelberg-New York, 1983. Zbl0501.12012MR85h:11067
- [9] H. HASSE, Bericht über neuere Untersuchungen und Probleme aus der Theorie der Algebraischen Zahlkörper, Physica-Verlag, Würzburg-Wien, 1970.
- [10] H. W. LEOPOLDT, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. Reine Angew. Math., 201 (1959), 119-149. Zbl0098.03403MR21 #7195
- [11] R. E. MACKENZIE, and G. WHAPLES, Artin-Schreier equations in characteristic zero, Am. J. of Math., 78 (1956), 473-485. Zbl0073.26402MR19,834c
- [12] J. MARTINET, Bases normales et constante de l'équation fonctionnelle des fonctions L d'Artin, Séminaire Bourbaki (1973/1974) no. 450. Zbl0331.12006
- [13] E. MAUS, Existenz β-adischer Zahlkörper zu Vorgegebenem Verzweigungsverhalten, Dissertation, Hamburg, 1965.
- [14] H. MIKI, On the ramification numbers of cyclic p-extensions over local fields, J. Reine Angew. Math., 328 (1981), 99-115. Zbl0457.12005MR83k:12014
- [15] Y. MIYATA, On the module structure of a p- extension over a p-adic number field, Nagoya Math. J., 77, (1980), 13-23. Zbl0444.12012MR81b:12015
- [16] M. RZEDOWSKI-CALDERÓN, G. D. VILLA-SALVADOR, M. L. MADAN, Galois module structure of rings of integers, Math. Z., 204 (1990), 401-424. Zbl0682.12003MR92e:11128
- [17] S. SEN, On automorphisms of local fields, Ann. Math., (2) 90 (1969), 33-46. Zbl0199.36301MR39 #5531
- [18] J-P. SERRE, Local fields, Graduate Texts Mathematics, Vol. 67. Springer-Verlag, Berlin-Heidelberg-New York 1979. Zbl0423.12016
- [19] S. V. VOSTOKOV, Ideals of an abelian p- extension of a local field as Galois modules, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Akad. Nauk. SSSR, 57 (1976), 64-84.
- [20] B. WYMAN, Wildly ramified gamma extensions, Am. J. Math., 91 (1969), 135-152. Zbl0188.11003MR39 #2726
- [21] H. YOKOI, On the ring of integers in an algebraic number field as a representation module of Galois group, Nagoya Math. J., 16 (1960), 83-90. Zbl0119.27703MR23 #A888
Citations in EuDML Documents
top- Nigel P. Byott, G. Griffith Elder, New ramification breaks and additive Galois structure
- G. Griffith Elder, On Galois structure of the integers in cyclic extensions of local number fields
- G. Griffith Elder, Jeffrey J. Hooper, On wild ramification in quaternion extensions
- Nigel P. Byott, Galois structure of ideals in wildly ramified abelian -extensions of a -adic field, and some applications
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.