Galois module structure of ideals in wildly ramified cyclic extensions of degree p 2

Gove Griffith Elder

Annales de l'institut Fourier (1995)

  • Volume: 45, Issue: 3, page 625-647
  • ISSN: 0373-0956

Abstract

top
For L / K , any totally ramified cyclic extension of degree p 2 of local fields which are finite extensions of the field of p -adic numbers, we describe the p [ Gal ( L / K ) ] -module structure of each fractional ideal of L explicitly in terms of the 4 p + 1 indecomposable p [ Gal ( L / K ) ] -modules classified by Heller and Reiner. The exponents are determined only by the invariants of ramification.

How to cite

top

Elder, Gove Griffith. "Galois module structure of ideals in wildly ramified cyclic extensions of degree $p^2$." Annales de l'institut Fourier 45.3 (1995): 625-647. <http://eudml.org/doc/75132>.

@article{Elder1995,
abstract = {For $L/K$, any totally ramified cyclic extension of degree $p^2$ of local fields which are finite extensions of the field of $p$-adic numbers, we describe the $\{\Bbb Z\}_p[\{\rm Gal\}(L/K)]$-module structure of each fractional ideal of $L$ explicitly in terms of the $4p+1$ indecomposable $\{\Bbb Z\}_p[\{\rm Gal\}(L/K)]$-modules classified by Heller and Reiner. The exponents are determined only by the invariants of ramification.},
author = {Elder, Gove Griffith},
journal = {Annales de l'institut Fourier},
keywords = {Galois module structure; wild ramification; local number field; integral representation; finite representation type},
language = {eng},
number = {3},
pages = {625-647},
publisher = {Association des Annales de l'Institut Fourier},
title = {Galois module structure of ideals in wildly ramified cyclic extensions of degree $p^2$},
url = {http://eudml.org/doc/75132},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Elder, Gove Griffith
TI - Galois module structure of ideals in wildly ramified cyclic extensions of degree $p^2$
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 3
SP - 625
EP - 647
AB - For $L/K$, any totally ramified cyclic extension of degree $p^2$ of local fields which are finite extensions of the field of $p$-adic numbers, we describe the ${\Bbb Z}_p[{\rm Gal}(L/K)]$-module structure of each fractional ideal of $L$ explicitly in terms of the $4p+1$ indecomposable ${\Bbb Z}_p[{\rm Gal}(L/K)]$-modules classified by Heller and Reiner. The exponents are determined only by the invariants of ramification.
LA - eng
KW - Galois module structure; wild ramification; local number field; integral representation; finite representation type
UR - http://eudml.org/doc/75132
ER -

References

top
  1. [1] A.-M. BERGÉ, Sur l'arithmétique d'une extension cyclique totalement ramifiée d'un corps local, C. R. Acad. Sc. Paris, 281 (1975), 67-70. Zbl0306.12009MR54 #2625
  2. [2] F. BERTRANDIAS, Sur les extensions cycliques de degré pn d'un corps local, Acta Arith., 34-4 (1979), 361-377. Zbl0381.12008MR80k:12022
  3. [3] F. BERTRANDIAS, J.-P. BERTRANDIAS, M.-J. FERTON, Sur l'anneau des entiers d'une extension cyclique de degré premier d'un corps local, C. R. Acad. Sc. Paris, 274 (1972), 1388-1391. Zbl0235.12008MR45 #5109
  4. [4] N BYOTT, On Galois isomorphisms between ideals in extensions of local fields, Manuscripta Math., 73 (1991), 289-311. Zbl0771.11047MR92g:11115
  5. [5] C. W. CURTIS, and I. REINER, Methods of Representation Theory, Wiley, New York, 1981. Zbl0469.20001
  6. [6] G. G. ELDER, and M. L. MADAN, Galois module structure of integers in wildly ramified cyclic extensions, J. Number Theory, 47 #2 (1994), 138-174. Zbl0801.11046MR95e:11125
  7. [7] M.-J. FERTON, Sur L'anneau des entiers de certaines extensions cycliques d'un corps local, Astérisque, 24-25 (1975), 21-28. Zbl0306.12008MR51 #10305
  8. [8] A. FRÖHLICH, Galois Module Structure of Algebraic Integers, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 Folge, Bd. 1, Springer-Verlag, Berlin-Heidelberg-New York, 1983. Zbl0501.12012MR85h:11067
  9. [9] H. HASSE, Bericht über neuere Untersuchungen und Probleme aus der Theorie der Algebraischen Zahlkörper, Physica-Verlag, Würzburg-Wien, 1970. 
  10. [10] H. W. LEOPOLDT, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. Reine Angew. Math., 201 (1959), 119-149. Zbl0098.03403MR21 #7195
  11. [11] R. E. MACKENZIE, and G. WHAPLES, Artin-Schreier equations in characteristic zero, Am. J. of Math., 78 (1956), 473-485. Zbl0073.26402MR19,834c
  12. [12] J. MARTINET, Bases normales et constante de l'équation fonctionnelle des fonctions L d'Artin, Séminaire Bourbaki (1973/1974) no. 450. Zbl0331.12006
  13. [13] E. MAUS, Existenz β-adischer Zahlkörper zu Vorgegebenem Verzweigungsverhalten, Dissertation, Hamburg, 1965. 
  14. [14] H. MIKI, On the ramification numbers of cyclic p-extensions over local fields, J. Reine Angew. Math., 328 (1981), 99-115. Zbl0457.12005MR83k:12014
  15. [15] Y. MIYATA, On the module structure of a p- extension over a p-adic number field, Nagoya Math. J., 77, (1980), 13-23. Zbl0444.12012MR81b:12015
  16. [16] M. RZEDOWSKI-CALDERÓN, G. D. VILLA-SALVADOR, M. L. MADAN, Galois module structure of rings of integers, Math. Z., 204 (1990), 401-424. Zbl0682.12003MR92e:11128
  17. [17] S. SEN, On automorphisms of local fields, Ann. Math., (2) 90 (1969), 33-46. Zbl0199.36301MR39 #5531
  18. [18] J-P. SERRE, Local fields, Graduate Texts Mathematics, Vol. 67. Springer-Verlag, Berlin-Heidelberg-New York 1979. Zbl0423.12016
  19. [19] S. V. VOSTOKOV, Ideals of an abelian p- extension of a local field as Galois modules, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Akad. Nauk. SSSR, 57 (1976), 64-84. 
  20. [20] B. WYMAN, Wildly ramified gamma extensions, Am. J. Math., 91 (1969), 135-152. Zbl0188.11003MR39 #2726
  21. [21] H. YOKOI, On the ring of integers in an algebraic number field as a representation module of Galois group, Nagoya Math. J., 16 (1960), 83-90. Zbl0119.27703MR23 #A888

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.