Sequences of algebraic integers and density modulo
Roman Urban[1]
- [1] Institute of Mathematics Wroclaw University Plac Grunwaldzki 2/4 50-384 Wroclaw, Poland
Journal de Théorie des Nombres de Bordeaux (2007)
- Volume: 19, Issue: 3, page 755-762
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topUrban, Roman. "Sequences of algebraic integers and density modulo $1$." Journal de Théorie des Nombres de Bordeaux 19.3 (2007): 755-762. <http://eudml.org/doc/249962>.
@article{Urban2007,
abstract = {We prove density modulo $1$ of the sets of the form\begin\{equation*\} \lbrace \mu ^m\lambda ^n\xi +r\_m:n,m\in \mathbb\{N\}\rbrace , \end\{equation*\}where $\lambda ,\mu \in \mathbb\{R\}$ is a pair of rationally independent algebraic integers of degree $d\ge 2,$ satisfying some additional assumptions, $\xi \ne 0,$ and $r_m$ is any sequence of real numbers.},
affiliation = {Institute of Mathematics Wroclaw University Plac Grunwaldzki 2/4 50-384 Wroclaw, Poland},
author = {Urban, Roman},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Density modulo $1,$ algebraic integers; topological dynamics; ID-semigroups; Density modulo 1; algebraic integers},
language = {eng},
number = {3},
pages = {755-762},
publisher = {Université Bordeaux 1},
title = {Sequences of algebraic integers and density modulo $1$},
url = {http://eudml.org/doc/249962},
volume = {19},
year = {2007},
}
TY - JOUR
AU - Urban, Roman
TI - Sequences of algebraic integers and density modulo $1$
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 3
SP - 755
EP - 762
AB - We prove density modulo $1$ of the sets of the form\begin{equation*} \lbrace \mu ^m\lambda ^n\xi +r_m:n,m\in \mathbb{N}\rbrace , \end{equation*}where $\lambda ,\mu \in \mathbb{R}$ is a pair of rationally independent algebraic integers of degree $d\ge 2,$ satisfying some additional assumptions, $\xi \ne 0,$ and $r_m$ is any sequence of real numbers.
LA - eng
KW - Density modulo $1,$ algebraic integers; topological dynamics; ID-semigroups; Density modulo 1; algebraic integers
UR - http://eudml.org/doc/249962
ER -
References
top- D. Berend, Multi-invariant sets on tori. Trans. Amer. Math. Soc. 280 (1983), no. 2, 509–532. Zbl0532.10028MR716835
- D. Berend, Multi-invariant sets on compact abelian groups. Trans. Amer. Math. Soc. 286 (1984), no. 2, 505–535. Zbl0523.22004MR760973
- D. Berend, Dense dilated semigroups of algebraic numbers. J. Number Theory 26 (1987), no. 3, 246–256. Zbl0623.10038MR901238
- H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Systems Theory 1 (1967), 1–49. Zbl0146.28502MR213508
- Y. Guivarc’h and A. N. Starkov, Orbits of linear group actions, random walk on homogeneous spaces, and toral automorphisms. Ergodic Theory Dynam. Systems 24 (2004), no. 3, 767–802. Zbl1050.37012MR2060998
- Y. Guivarc’h and R. Urban, Semigroup actions on tori and stationary measures on projective spaces. Studia Math. 171 (2005), no. 1, 33–66. Zbl1087.37022MR2182271
- A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and its Applications 54, Cambridge University Press, Cambridge, 1995. Zbl0878.58020MR1326374
- S. Kolyada and L. Snoha, Some aspects of topological transitivity – a survey. Grazer Math. Ber. 334 (1997), 3–35. Zbl0907.54036MR1644768
- B. Kra, A generalization of Furstenberg’s Diophantine theorem. Proc. Amer. Math. Soc. 127 (1999), no. 7, 1951–1956. Zbl0921.11034MR1487320
- D. Meiri, Entropy and uniform distribution of orbits in . Israel J. Math. 105 (1998), 155–183. Zbl0908.11032MR1639747
- L. Kuipers and H. Niederreiter, Uniform distribution of sequences. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Zbl0281.10001MR419394
- R. Mañé, Ergodic theory and differentiable dynamics. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Springer-Verlag, Berlin, 1987. Zbl0616.28007MR889254
- R. Muchnik, Semigroup actions on . Geometriae Dedicata 110 (2005), 1–47. Zbl1071.37008MR2136018
- S. Silverman, On maps with dense orbits and the definition of chaos. Rocky Mt. J. Math. 22 (1992), no. 1, 353–375. Zbl0758.58024MR1159963
- R. Urban, On density modulo of some expressions containing algebraic integers. Acta Arith., 127 (2007), no. 3, 217–229. Zbl1118.11034MR2310344
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.