A survey of results on density modulo 1 of double sequences containing algebraic numbers

Roman Urban

Acta Mathematica Universitatis Ostraviensis (2008)

  • Volume: 16, Issue: 1, page 31-43
  • ISSN: 1804-1388

Abstract

top
In this survey article we start from the famous Furstenberg theorem on non-lacunary semigroups of integers, and next we present its generalizations and some related results.

How to cite

top

Urban, Roman. "A survey of results on density modulo $1$ of double sequences containing algebraic numbers." Acta Mathematica Universitatis Ostraviensis 16.1 (2008): 31-43. <http://eudml.org/doc/35174>.

@article{Urban2008,
abstract = {In this survey article we start from the famous Furstenberg theorem on non-lacunary semigroups of integers, and next we present its generalizations and some related results.},
author = {Urban, Roman},
journal = {Acta Mathematica Universitatis Ostraviensis},
keywords = {Algebraic numbers; density modulo $1$; uniformly distributed sequences; topological dynamics; semigroups of endomorphisms; ID-semigroup; invariant sets; $a$-adic solenoids; Algebraic numbers; density modulo 1; uniformly distributed sequences; topological dynamics; semigroups of endomorphisms; ID-semigroup; invariant sets; -adic solenoids},
language = {eng},
number = {1},
pages = {31-43},
publisher = {University of Ostrava},
title = {A survey of results on density modulo $1$ of double sequences containing algebraic numbers},
url = {http://eudml.org/doc/35174},
volume = {16},
year = {2008},
}

TY - JOUR
AU - Urban, Roman
TI - A survey of results on density modulo $1$ of double sequences containing algebraic numbers
JO - Acta Mathematica Universitatis Ostraviensis
PY - 2008
PB - University of Ostrava
VL - 16
IS - 1
SP - 31
EP - 43
AB - In this survey article we start from the famous Furstenberg theorem on non-lacunary semigroups of integers, and next we present its generalizations and some related results.
LA - eng
KW - Algebraic numbers; density modulo $1$; uniformly distributed sequences; topological dynamics; semigroups of endomorphisms; ID-semigroup; invariant sets; $a$-adic solenoids; Algebraic numbers; density modulo 1; uniformly distributed sequences; topological dynamics; semigroups of endomorphisms; ID-semigroup; invariant sets; -adic solenoids
UR - http://eudml.org/doc/35174
ER -

References

top
  1. Akhunzhanov R.K., 10.1023/B:MATN.0000036753.96493.67, . Math. Notes 76(2):153–160, 2004. Zbl1196.11107MR2098988DOI10.1023/B:MATN.0000036753.96493.67
  2. Berend D., 10.1090/S0002-9947-1983-0716835-6, . Trans. Amer. Math. Soc., 280(2):509–532, 1983. (1983) Zbl0532.10028MR0716835DOI10.1090/S0002-9947-1983-0716835-6
  3. Berend D., 10.1090/S0002-9947-1984-0760973-X, . Trans. Amer. Math. Soc. 286(2):505–535, 1984. (1984) Zbl0523.22004MR0760973DOI10.1090/S0002-9947-1984-0760973-X
  4. Berend D., Actions of sets of integers on irrationals, . Acta Arith. 48:275–306, 1987. (1987) Zbl0575.10030MR0921090
  5. Berend D., 10.1016/0022-314X(87)90082-5, . J. Number Theory, 26(3):246–256, 1987. (1987) MR0901238DOI10.1016/0022-314X(87)90082-5
  6. Boshernitzan M. D., Elementary proof of Furstenberg’s Diophantine result, . Proc. Amer. Math. Soc. 122(1):67–70, 1994. (1994) Zbl0815.11036MR1195714
  7. Bourgain J., Lindenstrauss E., Michel P., Venkatesh A., Some effective results for × a × b . , Preprint. Available online at http://cims.nyu.edu/~venkatesh/research/blmv.pdf MR2563089
  8. Dubickas A., 10.2298/PIM0591067D, . Publ. Inst. Math. (Beograd) (N.S.) 77(91):67–70, 2005. Zbl1220.11131MR2213512DOI10.2298/PIM0591067D
  9. Furstenberg H., 10.1007/BF01692494, . Math. Systems Theory, 1:1–49, 1967. (1967) Zbl0146.28502MR0213508DOI10.1007/BF01692494
  10. Guivarc’h Y., Renewal theorems, products of random matrices, and toral endomorphisms, . Potential theory in Matsue, 53–66, Adv. Stud. Pure Math., 44, Math. Soc. Japan, Tokyo, 2006. MR2277822
  11. Guivarc’h Y., Starkov A. N., Orbits of linear group actions, random walk on homogeneous spaces, and toral automorphisms, . Ergodic Theory Dynam. Systems, 24(3):767–802, 2004. MR2060998
  12. Guivarc’h Y., Urban R., Semigroup actions on tori and stationary measures on projective spaces, , Studia Math. 171(1):33–66, 2005. Corrigendum to the paper: Studia Math. 183(2):195–196, 2007. (196,) MR2182271
  13. Hewitt E., Ross K. A., Abstract harmonic analysis, , volume 1. Springer, Berlin, 1994. (1994) Zbl0837.43002
  14. Kra B., A generalization of Furstenberg’s Diophantine theorem, . Proc. Amer. Math. Soc. 127(7):1951–1956, 1999. (1951) MR1487320
  15. Lindenstrauss E., 10.1007/BF02772541, . Israel J. Math. 149:199–227, 2005. Zbl1155.37301MR2191215DOI10.1007/BF02772541
  16. Meiri D., Entropy and uniform distribution of orbits in 𝕋 d , . Israel J. Math. 105:155–183, 1998. (1998) MR1639747
  17. Meiri D., Peres Y., Bi-invariant sets and measures have integer Hausdorff dimension, . Ergodic Theory Dynam. Systems 19(2):523–534, 1999. (19(2) MR1685405
  18. Muchnik R., Orbits of Zariski dense semigroups of SL ( n , ) , , preprint 
  19. Muchnik R., Semigroup actions on 𝕋 n , . Geometriae Dedicata, 110:1–47, 2005. MR2136018
  20. Urban R., 10.4064/aa127-3-2, . Acta Arith., 127(3):217–229, 2007. Zbl1202.11041MR2310344DOI10.4064/aa127-3-2
  21. Urban R., 10.5802/jtnb.610, . J. Théor. Nombres Bordeaux 19(3):755–762, 2007. (19(3) MR2388796DOI10.5802/jtnb.610
  22. Urban R., 10.1016/j.jnt.2007.05.012, . J. Number Theory, 128(3):645–661, 2008. MR2389861DOI10.1016/j.jnt.2007.05.012
  23. Urban R., Sequences of algebraic numbers and density modulo 1 , . Publ. Math. Debrecen, 72(1–2):141–154, 2008. Zbl1164.11027MR2376865
  24. Urban R., On density modulo 1 of some expressions containing algebraic numbers, , submitted. 
  25. Veech W. A., 10.1090/S0002-9904-1977-14319-X, . Bull. Amer. Math. Soc. 83(5):775–830, 1977. (1977) Zbl0384.28018MR0467705DOI10.1090/S0002-9904-1977-14319-X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.