On -adic zeros of systems of diagonal forms restricted by a congruence condition
Hemar Godhino[1]; Paulo H. A. Rodrigues[2]
- [1] Departamento de Matemática Universidade de Brasília 70.910-900, Brasília, DF, Brasil
- [2] Instituto de Matemática e Estatística Universidade Federal de Goiás 74.001-970, Goiânia, GO, Brasil
Journal de Théorie des Nombres de Bordeaux (2007)
- Volume: 19, Issue: 1, page 205-219
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topGodhino, Hemar, and Rodrigues, Paulo H. A.. "On ${p}$-adic zeros of systems of diagonal forms restricted by a congruence condition." Journal de Théorie des Nombres de Bordeaux 19.1 (2007): 205-219. <http://eudml.org/doc/249965>.
@article{Godhino2007,
abstract = {This paper is concerned with non-trivial solvability in $p$-adic integers of systems of additive forms. Assuming that the congruence equation $ax^k+by^k+cz^k \equiv d \,(\mbox \{mod\}\,p)$ has a solution with $xyz \nequiv0 \,(\mbox \{mod\}\,p)$ we have proved that any system of $R$ additive forms of degree $k$ with at least $2\cdot 3^\{R-1\}\cdot k +1$ variables, has always non-trivial $p$-adic solutions, provided $p \nmid k$. The assumption of the solubility of the above congruence equation is guaranteed, for example, if $p > k^4$.},
affiliation = {Departamento de Matemática Universidade de Brasília 70.910-900, Brasília, DF, Brasil; Instituto de Matemática e Estatística Universidade Federal de Goiás 74.001-970, Goiânia, GO, Brasil},
author = {Godhino, Hemar, Rodrigues, Paulo H. A.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Diagonal forms; -adic zeros},
language = {eng},
number = {1},
pages = {205-219},
publisher = {Université Bordeaux 1},
title = {On $\{p\}$-adic zeros of systems of diagonal forms restricted by a congruence condition},
url = {http://eudml.org/doc/249965},
volume = {19},
year = {2007},
}
TY - JOUR
AU - Godhino, Hemar
AU - Rodrigues, Paulo H. A.
TI - On ${p}$-adic zeros of systems of diagonal forms restricted by a congruence condition
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 1
SP - 205
EP - 219
AB - This paper is concerned with non-trivial solvability in $p$-adic integers of systems of additive forms. Assuming that the congruence equation $ax^k+by^k+cz^k \equiv d \,(\mbox {mod}\,p)$ has a solution with $xyz \nequiv0 \,(\mbox {mod}\,p)$ we have proved that any system of $R$ additive forms of degree $k$ with at least $2\cdot 3^{R-1}\cdot k +1$ variables, has always non-trivial $p$-adic solutions, provided $p \nmid k$. The assumption of the solubility of the above congruence equation is guaranteed, for example, if $p > k^4$.
LA - eng
KW - Diagonal forms; -adic zeros
UR - http://eudml.org/doc/249965
ER -
References
top- O.D. Atkinson, J. Brüdern, R.J. Cook, Simultaneous additive congruences to a large prime modulus. Mathematika 39 (1) (1992), 1–9. Zbl0774.11016MR1176464
- H. Davenport, D.J. Lewis, Simultaneous equations of additive type. Philos. Trans. Roy. Soc. London, Ser. A 264 (1969), 557–595. Zbl0207.35304MR245542
- H. Godinho, P. H. A. Rodrigues, Conditions for the solvability of systems of two and three additive forms over p-adic fields. Proc. of the London Math. Soc. 91 (2005), 545–572. Zbl1086.11020MR2180455
- D.J. Lewis, H. Montgomery, On zeros of p-adic forms. Michigan Math. Journal 30 (1983), 83–87. Zbl0531.10026MR694931
- L. Low, J. Pitman, A. Wolff, Simultaneous Diagonal Congruences. J. Number Theory 29 (1988), 31–59. Zbl0643.10011MR938869
- I. D. Meir, Pairs of Additive Congruences to a Large Prime Modulus. J. Number Theory 63 (1997), 132–142. Zbl0871.11024MR1438653
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.