Page 1 Next

Displaying 1 – 20 of 41

Showing per page

A formula for the number of solutions of a restricted linear congruence

K. Vishnu Namboothiri (2021)

Mathematica Bohemica

Consider the linear congruence equation x 1 + ... + x k b ( mod n s ) for b , n , s . Let ( a , b ) s denote the generalized gcd of a and b which is the largest l s with l dividing a and b simultaneously. Let d 1 , ... , d τ ( n ) be all positive divisors of n . For each d j n , define 𝒞 j , s ( n ) = { 1 x n s : ( x , n s ) s = d j s } . K. Bibak et al. (2016) gave a formula using Ramanujan sums for the number of solutions of the above congruence equation with some gcd restrictions on x i . We generalize their result with generalized gcd restrictions on x i and prove that for the above linear congruence, the number of solutions...

A system of simultaneous congruences arising from trinomial exponential sums

Todd Cochrane, Jeremy Coffelt, Christopher Pinner (2006)

Journal de Théorie des Nombres de Bordeaux

For a prime p and positive integers < k < h < p with d = ( h , k , , p - 1 ) , we show that M , the number of simultaneous solutions x , y , z , w in p * to x h + y h = z h + w h , x k + y k = z k + w k , x + y = z + w , satisfies M 3 d 2 ( p - 1 ) 2 + 25 h k ( p - 1 ) . When h k = o ( p d 2 ) we obtain a precise asymptotic count on M . This leads to the new twisted exponential sum bound x = 1 p - 1 χ ( x ) e 2 π i f ( x ) / p 3 1 4 d 1 2 p 7 8 + 5 h k 1 4 p 5 8 , for trinomials f = a x h + b x k + c x , and to results on the average size of such sums.

Chebyshev polynomials and Pell equations over finite fields

Boaz Cohen (2021)

Czechoslovak Mathematical Journal

We shall describe how to construct a fundamental solution for the Pell equation x 2 - m y 2 = 1 over finite fields of characteristic p 2 . Especially, a complete description of the structure of these fundamental solutions will be given using Chebyshev polynomials. Furthermore, we shall describe the structure of the solutions of the general Pell equation x 2 - m y 2 = n .

Linear congruences and a conjecture of Bibak

Chinnakonda Gnanamoorthy Karthick Babu, Ranjan Bera, Balasubramanian Sury (2024)

Czechoslovak Mathematical Journal

We address three questions posed by K. Bibak (2020), and generalize some results of K. Bibak, D. N. Lehmer and K. G. Ramanathan on solutions of linear congruences i = 1 k a i x i b ( mod n ) . In particular, we obtain explicit expressions for the number of solutions, where x i ’s are squares modulo n . In addition, we obtain expressions for the number of solutions with order restrictions x 1 x k or with strict order restrictions x 1 > > x k in some special cases. In these results, the expressions for the number of solutions involve Ramanujan...

Number of solutions in a box of a linear equation in an Abelian group

Maciej Zakarczemny (2016)

Colloquium Mathematicae

For every finite Abelian group Γ and for all g , a , . . . , a k Γ , if there exists a solution of the equation i = 1 k a i x i = g in non-negative integers x i b i , where b i are positive integers, then the number of such solutions is estimated from below in the best possible way.

Currently displaying 1 – 20 of 41

Page 1 Next