On elliptic Galois representations and genus-zero modular units
Julio Fernández[1]; Joan-C. Lario[2]
- [1] Departament de Matemàtica Aplicada 4 Universitat Politècnica de Catalunya EPSEVG, av. Víctor Balaguer E-08800 Vilanova i la Geltrú
- [2] Departament de Matemàtica Aplicada 2 Universitat Politècnica de Catalunya Edifici Omega, Campus Nord E-08034 Barcelona
Journal de Théorie des Nombres de Bordeaux (2007)
- Volume: 19, Issue: 1, page 141-164
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topFernández, Julio, and Lario, Joan-C.. "On elliptic Galois representations and genus-zero modular units." Journal de Théorie des Nombres de Bordeaux 19.1 (2007): 141-164. <http://eudml.org/doc/249968>.
@article{Fernández2007,
abstract = {Given an odd prime $p$ and a representation $\varrho $ of the absolute Galois group of a number field $k$ onto $\mathrm\{PGL\}_2(\mathbb\{F\}_p)$ with cyclotomic determinant, the moduli space of elliptic curves defined over $k$ with $p$-torsion giving rise to $\varrho $ consists of two twists of the modular curve $X(p)$. We make here explicit the only genus-zero cases $p=3$ and $p=5$, which are also the only symmetric cases: $\mathrm\{PGL\}_2(\mathbb\{F\}_p)\simeq \mathcal\{S\}_n$ for $n=4$ or $n=5$, respectively. This is done by studying the corresponding twisted Galois actions on the function field of the curve, for which a description in terms of modular units is given. As a consequence of this twisting process, we recover an equivalence between the ellipticity of $\varrho $ and its principality, that is, the existence in its fixed field of an element $\alpha $ of degree $n$ over $k$ such that $\alpha $ and $\alpha ^2$ have both trace zero over $k$.},
affiliation = {Departament de Matemàtica Aplicada 4 Universitat Politècnica de Catalunya EPSEVG, av. Víctor Balaguer E-08800 Vilanova i la Geltrú; Departament de Matemàtica Aplicada 2 Universitat Politècnica de Catalunya Edifici Omega, Campus Nord E-08034 Barcelona},
author = {Fernández, Julio, Lario, Joan-C.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {elliptic Galois representations; genus-zero modular units},
language = {eng},
number = {1},
pages = {141-164},
publisher = {Université Bordeaux 1},
title = {On elliptic Galois representations and genus-zero modular units},
url = {http://eudml.org/doc/249968},
volume = {19},
year = {2007},
}
TY - JOUR
AU - Fernández, Julio
AU - Lario, Joan-C.
TI - On elliptic Galois representations and genus-zero modular units
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 1
SP - 141
EP - 164
AB - Given an odd prime $p$ and a representation $\varrho $ of the absolute Galois group of a number field $k$ onto $\mathrm{PGL}_2(\mathbb{F}_p)$ with cyclotomic determinant, the moduli space of elliptic curves defined over $k$ with $p$-torsion giving rise to $\varrho $ consists of two twists of the modular curve $X(p)$. We make here explicit the only genus-zero cases $p=3$ and $p=5$, which are also the only symmetric cases: $\mathrm{PGL}_2(\mathbb{F}_p)\simeq \mathcal{S}_n$ for $n=4$ or $n=5$, respectively. This is done by studying the corresponding twisted Galois actions on the function field of the curve, for which a description in terms of modular units is given. As a consequence of this twisting process, we recover an equivalence between the ellipticity of $\varrho $ and its principality, that is, the existence in its fixed field of an element $\alpha $ of degree $n$ over $k$ such that $\alpha $ and $\alpha ^2$ have both trace zero over $k$.
LA - eng
KW - elliptic Galois representations; genus-zero modular units
UR - http://eudml.org/doc/249968
ER -
References
top- R.W. Carter, Simple groups of Lie type. Pure and Applied Mathematics 28. John Wiley & Sons, London-New York-Sydney, 1972. Zbl0248.20015MR407163
- J. Fernández, Elliptic realization of Galois representations. PhD thesis, Universitat Politècnica de Catalunya, 2003.
- J. Fernández, J-C. Lario, A. Rio, On twists of the modular curves . Bull. London Math. Soc. 37 (2005), 342–350. Zbl1084.11025MR2131387
- J. González, Equations of hyperelliptic modular curves. Ann. Inst. Fourier (Grenoble) 41 (1991), 779–795. Zbl0758.14010MR1150566
- D. S. Kubert, S. Lang, Modular units. Grundlehren der Mathematischen Wissenschaften 244. Springer-Verlag, New York, 1981. Zbl0492.12002MR648603
- J-C. Lario, A. Rio, An octahedral-elliptic type equality in . C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), 39–44. Zbl0837.11061MR1340079
- G. Ligozat, Courbes modulaires de niveau . Modular functions of one variable V, 149–237. Lecture Notes in Math. 601, Springer, Berlin, 1977. Zbl0357.14006MR463118
- B. Mazur, Rational points on modular curves. Modular functions of one variable V, 107–148. Lecture Notes in Math. 601, Springer, Berlin, 1977. Zbl0357.14005MR450283
- B. Mazur, Open problems regarding rational points on curves and varieties. Galois representations in arithmetic algebraic geometry (Durham, 1996), 239–265. London Math. Soc. Lecture Note Ser. 254. Cambridge Univ. Press, 1998. Zbl0943.14009MR1696485
- D. E. Rohrlich, Modular curves, Hecke correspondence, and -functions. Modular forms and Fermat’s last theorem (Boston, 1995), 41–100. Springer, New York, 1997. Zbl0897.11019
- K. Y. Shih, On the construction of Galois extensions of function fields and number fields. Math. Ann. 207 (1994), 99–120. Zbl0279.12102MR332725
- G. Shimura, Introduction to the arithmetic theory of automorphic functions. Publications of the Mathematical Society of Japan 11. Iwanami Shoten Publishers, Tokyo, 1971. Zbl0221.10029MR314766
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.