Equations of hyperelliptic modular curves

Josep Gonzalez Rovira

Annales de l'institut Fourier (1991)

  • Volume: 41, Issue: 4, page 779-795
  • ISSN: 0373-0956

Abstract

top
We compute, in a unified way, the equations of all hyperelliptic modular curves. The main tool is provided by a class of modular functions introduced by Newman in 1957. The method uses the action of the hyperelliptic involution on the cusps.

How to cite

top

Rovira, Josep Gonzalez. "Equations of hyperelliptic modular curves." Annales de l'institut Fourier 41.4 (1991): 779-795. <http://eudml.org/doc/74938>.

@article{Rovira1991,
abstract = {We compute, in a unified way, the equations of all hyperelliptic modular curves. The main tool is provided by a class of modular functions introduced by Newman in 1957. The method uses the action of the hyperelliptic involution on the cusps.},
author = {Rovira, Josep Gonzalez},
journal = {Annales de l'institut Fourier},
keywords = {equations of hyperelliptic modular curves},
language = {eng},
number = {4},
pages = {779-795},
publisher = {Association des Annales de l'Institut Fourier},
title = {Equations of hyperelliptic modular curves},
url = {http://eudml.org/doc/74938},
volume = {41},
year = {1991},
}

TY - JOUR
AU - Rovira, Josep Gonzalez
TI - Equations of hyperelliptic modular curves
JO - Annales de l'institut Fourier
PY - 1991
PB - Association des Annales de l'Institut Fourier
VL - 41
IS - 4
SP - 779
EP - 795
AB - We compute, in a unified way, the equations of all hyperelliptic modular curves. The main tool is provided by a class of modular functions introduced by Newman in 1957. The method uses the action of the hyperelliptic involution on the cusps.
LA - eng
KW - equations of hyperelliptic modular curves
UR - http://eudml.org/doc/74938
ER -

References

top
  1. [ALe] A. O. ATKIN, J. LEHNER, Hecke Operators on Г0(m), Math. Ann., 185 (1970), 134-160. Zbl0177.34901MR42 #3022
  2. [B] B. J. BIRCH, Some calculations of modulars relations, in "Modular Functions of One Variable I", Springer Lecture Notes, 320, 175-186. Zbl0261.10019MR48 #10984
  3. [F] R. FRICKE, "Die elliptischen Funktionen und ihre Anwendungen, II", Teubner (1922). Zbl48.0432.01JFM48.0432.01
  4. [K] P. G. KLUIT, On the Normalizer of Г0(N), in "Modular Functions of One Variable V". Springer Lecture Notes 601. Zbl0355.10020MR58 #513
  5. [LeN] J. LEHNER, M. NEWMAN, Weierstrass points of Г0(N), Ann. of Math., 79 (1964), 360-368. Zbl0124.29203MR28 #5045
  6. [Li] G. LIGOZAT, Courbes modulaires de genre 1, Bull. Soc. Math. France, Mémoire, 43 (1975). Zbl0322.14011MR54 #5121
  7. [MS] B. MAZUR, Swinnerton-Dyer, P : Arithmetic of Weil Curves, Inventiones Math., 25 (1974), 1-61. Zbl0281.14016
  8. [N1] M. NEWMAN, Construction and application of a class of modular functions, Proceed. of London Math. Soc., (1957), 334-350. Zbl0097.28701MR19,953c
  9. [N2] M. NEWMAN, Construction and application of a class of modular functions (II), Proceed. of London Math. Soc., (1959), 373-387. Zbl0178.43001MR21 #6354
  10. [O1] A. P. OGG, Hyperelliptic Modular Curves, Bull. Soc. Math. France, 102 (1974), 449-462. Zbl0314.10018MR51 #514
  11. [O2] A. P. OGG, On the Weierstarss points of X0(N), Illinois J. of Math., Vol. 22 (1978), 31-35. Zbl0374.14005MR57 #3136
  12. [R] E. REYSSAT, Quelques Aspects des Surfaces de Riemann, Birkhäusser, 1989. Zbl0689.30001MR90k:30085

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.