Local -characters in torsion rings
- [1] Research Institute for Mathematical Sciences Kyoto University Kyoto 606-8502, Japan
Journal de Théorie des Nombres de Bordeaux (2007)
- Volume: 19, Issue: 3, page 763-797
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topYasuda, Seidai. "Local $\varepsilon _0$-characters in torsion rings." Journal de Théorie des Nombres de Bordeaux 19.3 (2007): 763-797. <http://eudml.org/doc/249970>.
@article{Yasuda2007,
abstract = {Let $p$ be a rational prime and $K$ a complete discrete valuation field with residue field $k$ of positive characteristic $p$. When $k$ is finite, generalizing the theory of Deligne [1], we construct in [10] and [11] a theory of local $\varepsilon _0$-constants for representations, over a complete local ring with an algebraically closed residue field of characteristic $\ne p$, of the Weil group $W_K$ of $K$. In this paper, we generalize the results in [10] and [11] to the case where $k$ is an arbitrary perfect field.},
affiliation = {Research Institute for Mathematical Sciences Kyoto University Kyoto 606-8502, Japan},
author = {Yasuda, Seidai},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {local constants; Galois representations; Weil group},
language = {eng},
number = {3},
pages = {763-797},
publisher = {Université Bordeaux 1},
title = {Local $\varepsilon _0$-characters in torsion rings},
url = {http://eudml.org/doc/249970},
volume = {19},
year = {2007},
}
TY - JOUR
AU - Yasuda, Seidai
TI - Local $\varepsilon _0$-characters in torsion rings
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 3
SP - 763
EP - 797
AB - Let $p$ be a rational prime and $K$ a complete discrete valuation field with residue field $k$ of positive characteristic $p$. When $k$ is finite, generalizing the theory of Deligne [1], we construct in [10] and [11] a theory of local $\varepsilon _0$-constants for representations, over a complete local ring with an algebraically closed residue field of characteristic $\ne p$, of the Weil group $W_K$ of $K$. In this paper, we generalize the results in [10] and [11] to the case where $k$ is an arbitrary perfect field.
LA - eng
KW - local constants; Galois representations; Weil group
UR - http://eudml.org/doc/249970
ER -
References
top- P. Deligne, Les constantes des équations fonctionnelles des fonctions , Modular functions in one variable II. Lecture Notes in Math. 349, 501–597. Springer, Berlin, 1973. Zbl0271.14011MR349635
- P. Deligne, Les constantes locales de l’équation fonctionnelle de la fonction d’Artin d’une représentation orthogonale. Invent. Math. 35 (1976), 299–316. Zbl0337.12012MR506172
- M. Hazewinkel, Corps de classes local, appendix of M. Demazure, P. Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, 648–681. Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970. Zbl0203.23401MR302656
- G. Laumon, Transformation de Fourier, constantes d’équations fonctionnelles et conjecture de Weil. Inst. Hautes Études Sci. Publ. Math. 65 (1987), 131–210. Zbl0641.14009MR908218
- T. Saito, Ramification groups and local constants. UTMS preprint 96-19, University of Tokyo (1996).
- J.-P. Serre, Groupes proalgébriques. Inst. Hautes Études Sci. Publ. Math. 7 (1960), 1–67. Zbl0097.35901MR118722
- J.-P. Serre, Zeta and functions. Arithmetical Algebraic Geometry, 82–92. Harper and Row, New York, 1965. Zbl0171.19602MR194396
- J.-P. Serre, Représentations linéaires des groupes finis. Hermann, Paris, 1967. Zbl0189.02603MR232867
- J.-P. Serre, Corps locaux. Hermann, Paris, 1968. MR354618
- S. Yasuda, Local constants in torsion rings. Preprint (2001). Zbl1251.11078MR2582036
- S. Yasuda, The product formula for local constants in torsion rings. Preprint (2001). Zbl1251.11079MR2582037
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.