Galois groups of tamely ramified p -extensions

Nigel Boston[1]

  • [1] Department of Mathematics University of Wisconsin Madison, WI 53706, USA

Journal de Théorie des Nombres de Bordeaux (2007)

  • Volume: 19, Issue: 1, page 59-70
  • ISSN: 1246-7405

Abstract

top
Very little is known regarding the Galois group of the maximal p -extension unramified outside a finite set of primes S of a number field in the case that the primes above p are not in S . We describe methods to compute this group when it is finite and conjectural properties of it when it is infinite.

How to cite

top

Boston, Nigel. "Galois groups of tamely ramified $ p$-extensions." Journal de Théorie des Nombres de Bordeaux 19.1 (2007): 59-70. <http://eudml.org/doc/249973>.

@article{Boston2007,
abstract = {Very little is known regarding the Galois group of the maximal $p$-extension unramified outside a finite set of primes $S$ of a number field in the case that the primes above $p$ are not in $S$. We describe methods to compute this group when it is finite and conjectural properties of it when it is infinite.},
affiliation = {Department of Mathematics University of Wisconsin Madison, WI 53706, USA},
author = {Boston, Nigel},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {tame ramification},
language = {eng},
number = {1},
pages = {59-70},
publisher = {Université Bordeaux 1},
title = {Galois groups of tamely ramified $ p$-extensions},
url = {http://eudml.org/doc/249973},
volume = {19},
year = {2007},
}

TY - JOUR
AU - Boston, Nigel
TI - Galois groups of tamely ramified $ p$-extensions
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 1
SP - 59
EP - 70
AB - Very little is known regarding the Galois group of the maximal $p$-extension unramified outside a finite set of primes $S$ of a number field in the case that the primes above $p$ are not in $S$. We describe methods to compute this group when it is finite and conjectural properties of it when it is infinite.
LA - eng
KW - tame ramification
UR - http://eudml.org/doc/249973
ER -

References

top
  1. M.Abért, B.Virág, Dimension and randomness in groups acting on rooted trees. J. Amer. Math. Soc. 18 (2005), 157–192. Zbl1135.20015MR2114819
  2. W.Aitken, F.Hajir, C.Maire, Finitely ramified iterated extensions. Int. Math. Res. Not. 14 (2005), 855–880. Zbl1160.11356MR2146860
  3. Y.Barnea, M.Larsen, A non-abelian free pro-p group is not linear over a local field. J. Algebra 214 (1999), 338–341. Zbl0923.20018MR1684856
  4. Y.Barnea, A.Shalev, Hausdorff dimension, pro- p groups, and Kac-Moody algebras. Trans. Amer. Math. Soc. 349 (1997), 5073–5091. Zbl0892.20020MR1422889
  5. L.Bartholdi, M.R.Bush, Maximal unramified 3 -extensions of imaginary quadratic fields and S L 2 ( Z 3 ) . To appear in J. Number Theory. Zbl1166.11041
  6. L.Bartholdi, B.Virág, Amenability via random walks. To appear in Duke Math. J. Zbl1104.43002MR2176547
  7. W.Bosma, J.Cannon, Handbook of MAGMA Functions. Sydney: School of Mathematics and Statistics, University of Sydney, 1993. 
  8. N.Boston, Some Cases of the Fontaine-Mazur Conjecture II. J. Number Theory 75 (1999), 161–169. Zbl0928.11050MR1681626
  9. N.Boston, Reducing the Fontaine-Mazur conjecture to group theory. Progress in Galois theory (2005), 39–50. Zbl1129.14039MR2148459
  10. N.Boston, Embedding 2 -groups in groups generated by involutions. J. Algebra 300 (2006), 73–76. Zbl1102.12002MR2228635
  11. N.Boston, C.R.Leedham-Green, Explicit computation of Galois p -groups unramified at p . J. Algebra 256 (2002), 402–413. Zbl1016.11051MR1939112
  12. N.Boston, C.R.Leedham-Green, Counterexamples to a conjecture of Lemmermeyer. Arch. Math. Basel 72 (1999), 177–179. Zbl0922.11095MR1671275
  13. D.J.Broadhurst, On the enumeration of irreducible k -fold Euler sums and their roles in knot theory and field theory. J. Math. Phys. (to appear). 
  14. M.R.Bush, Computation of Galois groups associated to the 2 -class towers of some quadratic fields. J. Number Theory 100 (2003), 313–325. Zbl1039.11091MR1978459
  15. H. Cohen, H. W. Lenstra, Jr., Heuristics on class groups. Lecture Notes in Math. 1086, Springer-Verlag, Berlin 1984. Zbl0532.12008MR750661
  16. H.Cohn, J.C.Lagarias, On the existence of fields governing the 2 -invariants of the classgroup of Q ( d p ) as p varies. Math. Comp. 37 (1983), 711–730. Zbl0523.12002MR717716
  17. B.Eick, H.Koch, On maximal 2 -extensions of Q with given ramification. Proc. St. Petersburg Math. Soc. (Russian), American Math. Soc. Translations (English) (to appear). Zbl1188.11059MR2276852
  18. J.-M.Fontaine, B.Mazur, Geometric Galois representations. Proceedings of a conference held in Hong Kong, December 18-21, 1993,” International Press, Cambridge, MA and Hong Kong. Zbl0839.14011
  19. J.Gilbey, Permutation groups, a related algebra and a conjecture of Cameron. Journal of Algebraic Combinatorics, 19 (2004) 25–45. Zbl1080.20002MR2056765
  20. E.S.Golod, I.R.Shafarevich, On class field towers (Russian). Izv. Akad. Nauk. SSSR 28 (1964), 261–272. English translation in AMS Trans. (2) 48, 91–102. Zbl0148.28101MR161852
  21. R.Grigorchuk, Just infinite branch groups. New Horizons in pro- p Groups, Birkhauser, Boston 2000. Zbl0982.20024MR1765119
  22. R.Grigorchuk, A.Zuk, On a torsion-free weakly branch group defined by a three state automaton. Internat. J. Algebra Comput., 12 (2000), 223–246. Zbl1070.20031MR1902367
  23. F.Hajir, C.Maire, Tamely ramified towers and discriminant bounds for number fields. II. J. Symbolic Comput. 33 (2002), 415–423. Zbl1086.11051MR1890578
  24. G.Havas, M.F.Newman, E.A.O’Brien, Groups of deficiency zero. Geometric and Computational Perspectives on Infinite Groups, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 25 (1996) 53–67. Zbl0849.20019
  25. H.Kisilevsky, Number fields with class number congruent to 4 ( mod 8 ) and Hilbert’s theorem 94 . J. Number Theory 8 (1976), no. 3, 271–279 Zbl0334.12019
  26. H.Koch, Galois theory of p -extensions. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2002. Zbl1023.11002MR1930372
  27. H.Koch, B.Venkov, The p -tower of class fields for an imaginary quadratic field (Russian). Zap. Nau. Sem. Leningrad Otdel. Mat. Inst. Steklov (LOMI) 46 (1974), 5–13. Zbl0335.12022MR382235
  28. J.Labute, Mild pro- p -groups and Galois groups of p -extensions of Q . J. Reine Angew. Math. (to appear). Zbl1122.11076MR2254811
  29. A.Lubotzky, Group presentations, p -adic analytic groups and lattices in S L 2 ( C ) . Ann. Math. 118 (1983), 115–130. Zbl0541.20020MR707163
  30. J.Mennicke, Einige endliche Gruppe mit drei Erzeugenden und drei Relationen. Arch. Math. X (1959), 409–418. Zbl0089.01405MR113946
  31. E.A.O’Brien, The p -group generation algorithm. J. Symbolic Comput. 9 (1990), 677–698. Zbl0736.20001
  32. R.W.K.Odoni, Realising wreath products of cyclic groups as Galois groups. Mathematika 35 (1988), 101–113. Zbl0662.12010MR962740
  33. I.R.Shafarevich, Extensions with prescribed ramification points (Russian). IHES Publ. Math. 18 (1964), 71–95. MR176979
  34. M.Stoll, Galois groups over Q of some iterated polynomials. Arch. Math. (Basel) 59 (1992), 239–244. Zbl0758.11045MR1174401
  35. G.Willis, Totally disconnected, nilpotent, locally compact groups. Bull. Austral. Math. Soc. 55 (1997), 143–146. Zbl0893.22001MR1428537
  36. E.Zelmanov, On groups satisfying the Golod-Shafarevich condition. New horizons in pro- p groups, Birkhaüser Boston, Boston, MA, 2000. Zbl0974.20022MR1765122
  37. A.Zubkov, Non-abelian free pro- p -group are not represented by 2 × 2 -matrices. Siberian Math.J, 28 (1987), 64–69. Zbl0653.20026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.