Galois groups of tamely ramified -extensions
Nigel Boston[1]
- [1] Department of Mathematics University of Wisconsin Madison, WI 53706, USA
Journal de Théorie des Nombres de Bordeaux (2007)
- Volume: 19, Issue: 1, page 59-70
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBoston, Nigel. "Galois groups of tamely ramified $ p$-extensions." Journal de Théorie des Nombres de Bordeaux 19.1 (2007): 59-70. <http://eudml.org/doc/249973>.
@article{Boston2007,
abstract = {Very little is known regarding the Galois group of the maximal $p$-extension unramified outside a finite set of primes $S$ of a number field in the case that the primes above $p$ are not in $S$. We describe methods to compute this group when it is finite and conjectural properties of it when it is infinite.},
affiliation = {Department of Mathematics University of Wisconsin Madison, WI 53706, USA},
author = {Boston, Nigel},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {tame ramification},
language = {eng},
number = {1},
pages = {59-70},
publisher = {Université Bordeaux 1},
title = {Galois groups of tamely ramified $ p$-extensions},
url = {http://eudml.org/doc/249973},
volume = {19},
year = {2007},
}
TY - JOUR
AU - Boston, Nigel
TI - Galois groups of tamely ramified $ p$-extensions
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 1
SP - 59
EP - 70
AB - Very little is known regarding the Galois group of the maximal $p$-extension unramified outside a finite set of primes $S$ of a number field in the case that the primes above $p$ are not in $S$. We describe methods to compute this group when it is finite and conjectural properties of it when it is infinite.
LA - eng
KW - tame ramification
UR - http://eudml.org/doc/249973
ER -
References
top- M.Abért, B.Virág, Dimension and randomness in groups acting on rooted trees. J. Amer. Math. Soc. 18 (2005), 157–192. Zbl1135.20015MR2114819
- W.Aitken, F.Hajir, C.Maire, Finitely ramified iterated extensions. Int. Math. Res. Not. 14 (2005), 855–880. Zbl1160.11356MR2146860
- Y.Barnea, M.Larsen, A non-abelian free pro-p group is not linear over a local field. J. Algebra 214 (1999), 338–341. Zbl0923.20018MR1684856
- Y.Barnea, A.Shalev, Hausdorff dimension, pro- groups, and Kac-Moody algebras. Trans. Amer. Math. Soc. 349 (1997), 5073–5091. Zbl0892.20020MR1422889
- L.Bartholdi, M.R.Bush, Maximal unramified -extensions of imaginary quadratic fields and . To appear in J. Number Theory. Zbl1166.11041
- L.Bartholdi, B.Virág, Amenability via random walks. To appear in Duke Math. J. Zbl1104.43002MR2176547
- W.Bosma, J.Cannon, Handbook of MAGMA Functions. Sydney: School of Mathematics and Statistics, University of Sydney, 1993.
- N.Boston, Some Cases of the Fontaine-Mazur Conjecture II. J. Number Theory 75 (1999), 161–169. Zbl0928.11050MR1681626
- N.Boston, Reducing the Fontaine-Mazur conjecture to group theory. Progress in Galois theory (2005), 39–50. Zbl1129.14039MR2148459
- N.Boston, Embedding -groups in groups generated by involutions. J. Algebra 300 (2006), 73–76. Zbl1102.12002MR2228635
- N.Boston, C.R.Leedham-Green, Explicit computation of Galois -groups unramified at . J. Algebra 256 (2002), 402–413. Zbl1016.11051MR1939112
- N.Boston, C.R.Leedham-Green, Counterexamples to a conjecture of Lemmermeyer. Arch. Math. Basel 72 (1999), 177–179. Zbl0922.11095MR1671275
- D.J.Broadhurst, On the enumeration of irreducible -fold Euler sums and their roles in knot theory and field theory. J. Math. Phys. (to appear).
- M.R.Bush, Computation of Galois groups associated to the -class towers of some quadratic fields. J. Number Theory 100 (2003), 313–325. Zbl1039.11091MR1978459
- H. Cohen, H. W. Lenstra, Jr., Heuristics on class groups. Lecture Notes in Math. 1086, Springer-Verlag, Berlin 1984. Zbl0532.12008MR750661
- H.Cohn, J.C.Lagarias, On the existence of fields governing the -invariants of the classgroup of as varies. Math. Comp. 37 (1983), 711–730. Zbl0523.12002MR717716
- B.Eick, H.Koch, On maximal -extensions of with given ramification. Proc. St. Petersburg Math. Soc. (Russian), American Math. Soc. Translations (English) (to appear). Zbl1188.11059MR2276852
- J.-M.Fontaine, B.Mazur, Geometric Galois representations. Proceedings of a conference held in Hong Kong, December 18-21, 1993,” International Press, Cambridge, MA and Hong Kong. Zbl0839.14011
- J.Gilbey, Permutation groups, a related algebra and a conjecture of Cameron. Journal of Algebraic Combinatorics, 19 (2004) 25–45. Zbl1080.20002MR2056765
- E.S.Golod, I.R.Shafarevich, On class field towers (Russian). Izv. Akad. Nauk. SSSR 28 (1964), 261–272. English translation in AMS Trans. (2) 48, 91–102. Zbl0148.28101MR161852
- R.Grigorchuk, Just infinite branch groups. New Horizons in pro- Groups, Birkhauser, Boston 2000. Zbl0982.20024MR1765119
- R.Grigorchuk, A.Zuk, On a torsion-free weakly branch group defined by a three state automaton. Internat. J. Algebra Comput., 12 (2000), 223–246. Zbl1070.20031MR1902367
- F.Hajir, C.Maire, Tamely ramified towers and discriminant bounds for number fields. II. J. Symbolic Comput. 33 (2002), 415–423. Zbl1086.11051MR1890578
- G.Havas, M.F.Newman, E.A.O’Brien, Groups of deficiency zero. Geometric and Computational Perspectives on Infinite Groups, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 25 (1996) 53–67. Zbl0849.20019
- H.Kisilevsky, Number fields with class number congruent to and Hilbert’s theorem . J. Number Theory 8 (1976), no. 3, 271–279 Zbl0334.12019
- H.Koch, Galois theory of -extensions. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2002. Zbl1023.11002MR1930372
- H.Koch, B.Venkov, The -tower of class fields for an imaginary quadratic field (Russian). Zap. Nau. Sem. Leningrad Otdel. Mat. Inst. Steklov (LOMI) 46 (1974), 5–13. Zbl0335.12022MR382235
- J.Labute, Mild pro--groups and Galois groups of -extensions of . J. Reine Angew. Math. (to appear). Zbl1122.11076MR2254811
- A.Lubotzky, Group presentations, -adic analytic groups and lattices in . Ann. Math. 118 (1983), 115–130. Zbl0541.20020MR707163
- J.Mennicke, Einige endliche Gruppe mit drei Erzeugenden und drei Relationen. Arch. Math. X (1959), 409–418. Zbl0089.01405MR113946
- E.A.O’Brien, The -group generation algorithm. J. Symbolic Comput. 9 (1990), 677–698. Zbl0736.20001
- R.W.K.Odoni, Realising wreath products of cyclic groups as Galois groups. Mathematika 35 (1988), 101–113. Zbl0662.12010MR962740
- I.R.Shafarevich, Extensions with prescribed ramification points (Russian). IHES Publ. Math. 18 (1964), 71–95. MR176979
- M.Stoll, Galois groups over of some iterated polynomials. Arch. Math. (Basel) 59 (1992), 239–244. Zbl0758.11045MR1174401
- G.Willis, Totally disconnected, nilpotent, locally compact groups. Bull. Austral. Math. Soc. 55 (1997), 143–146. Zbl0893.22001MR1428537
- E.Zelmanov, On groups satisfying the Golod-Shafarevich condition. New horizons in pro- groups, Birkhaüser Boston, Boston, MA, 2000. Zbl0974.20022MR1765122
- A.Zubkov, Non-abelian free pro--group are not represented by -matrices. Siberian Math.J, 28 (1987), 64–69. Zbl0653.20026
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.