On the maximal unramified pro-2-extension over the cyclotomic -extension of an imaginary quadratic field
- [1] Department of Mathematics Nagoya Institute of Technology Gokiso, Showa, Nagoya, Aichi 466-8555, JAPAN
Journal de Théorie des Nombres de Bordeaux (2010)
- Volume: 22, Issue: 1, page 115-138
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topMizusawa, Yasushi. "On the maximal unramified pro-2-extension over the cyclotomic $\mathbb{Z}_2$-extension of an imaginary quadratic field." Journal de Théorie des Nombres de Bordeaux 22.1 (2010): 115-138. <http://eudml.org/doc/116391>.
@article{Mizusawa2010,
abstract = {For the cyclotomic $\mathbb\{Z\}_2$-extension $k_\{\infty \}$ of an imaginary quadratic field $k$, we consider the Galois group $G(k_\{\infty \})$ of the maximal unramified pro-$2$-extension over $k_\{\infty \}$. In this paper, we give some families of $k$ for which $G(k_\{\infty \})$ is a metabelian pro-$2$-group with the explicit presentation, and determine the case that $G(k_\{\infty \})$ becomes a nonabelian metacyclic pro-$2$-group. We also calculate Iwasawa theoretically the Galois groups of $2$-class field towers of certain cyclotomic $2$-extensions.},
affiliation = {Department of Mathematics Nagoya Institute of Technology Gokiso, Showa, Nagoya, Aichi 466-8555, JAPAN},
author = {Mizusawa, Yasushi},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Iwasawa theory; unramified abelian extensions; pro-p-groups},
language = {eng},
number = {1},
pages = {115-138},
publisher = {Université Bordeaux 1},
title = {On the maximal unramified pro-2-extension over the cyclotomic $\mathbb\{Z\}_2$-extension of an imaginary quadratic field},
url = {http://eudml.org/doc/116391},
volume = {22},
year = {2010},
}
TY - JOUR
AU - Mizusawa, Yasushi
TI - On the maximal unramified pro-2-extension over the cyclotomic $\mathbb{Z}_2$-extension of an imaginary quadratic field
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2010
PB - Université Bordeaux 1
VL - 22
IS - 1
SP - 115
EP - 138
AB - For the cyclotomic $\mathbb{Z}_2$-extension $k_{\infty }$ of an imaginary quadratic field $k$, we consider the Galois group $G(k_{\infty })$ of the maximal unramified pro-$2$-extension over $k_{\infty }$. In this paper, we give some families of $k$ for which $G(k_{\infty })$ is a metabelian pro-$2$-group with the explicit presentation, and determine the case that $G(k_{\infty })$ becomes a nonabelian metacyclic pro-$2$-group. We also calculate Iwasawa theoretically the Galois groups of $2$-class field towers of certain cyclotomic $2$-extensions.
LA - eng
KW - Iwasawa theory; unramified abelian extensions; pro-p-groups
UR - http://eudml.org/doc/116391
ER -
References
top- E. Benjamin, F. Lemmermeyer and C. Snyder, Imaginary quadratic fields with cyclic . J. Number Theory 67 (1997), no. 2, 229–245. Zbl0919.11074MR1486501
- E. Benjamin, F. Lemmermeyer and C. Snyder, Real quadratic fields with abelian -class field tower. J. Number Theory 73 (1998), no. 2, 182–194. Zbl0919.11073MR1658015
- E. Benjamin, F. Lemmermeyer and C. Snyder, Imaginary quadratic fields with and rank . Pacific J. Math. 198 (2001), no. 1, 15–31. Zbl1063.11038MR1831970
- E. Benjamin, F. Lemmermeyer and C. Snyder, Imaginary quadratic fields with . J. Number Theory 103 (2003), no. 1, 38–70. Zbl1045.11077MR2008065
- N. Boston, Galois groups of tamely ramified -extensions. J. Théor. Nombres Bordeaux 19 (2007), no. 1, 59–70. Zbl1123.11038MR2332053
- M. R. Bush, Computation of Galois groups associated to the -class towers of some quadratic fields. J. Number Theory 100 (2003), no. 2, 313–325. Zbl1039.11091MR1978459
- J. D. Dixon, M. P. F. du Sautoy, A. Mann and D. Segal, Analytic pro- groups. Second edition. Cambridge Studies in Advanced Mathematics 61, Cambridge University Press, Cambridge, 1999. Zbl0934.20001MR1720368
- B. Ferrero, The cyclotomic -extension of imaginary quadratic fields. Amer. J. Math. 102 (1980), no. 3, 447–459. Zbl0463.12002MR573095
- B. Ferrero and L. C. Washington, The Iwasawa invariant vanishes for abelian number fields. Ann. of Math. 109 (1979), no. 2, 377–395. Zbl0443.12001MR528968
- S. Fujii, On a higher class number formula of -extensions. Tokyo J. Math. 28 (2005), no. 1, 55–61. Zbl1074.11060MR2149622
- S. Fujii, Non-abelian Iwasawa theory of cyclotomic -extensions. The COE Seminar on Mathematical Sciences 2007, 85–97, Sem. Math. Sci. 37, Keio Univ., Yokohama, 2008. Zbl1159.11041MR2478430
- S. Fujii and K. Okano, Some problems on -class field towers. Tokyo J. Math. 30 (2007), no. 1, 211–222. Zbl1245.11110MR2328064
- E. S. Golod and I. R. Shafarevich, On the class field tower. Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 261–272. Zbl0136.02602MR161852
- R. Greenberg, On the Iwasawa invariants of totally real number fields. Amer. J. Math. 98 (1976), no. 1, 263–284. Zbl0334.12013MR401702
- F. Hajir, On a theorem of Koch. Pacific J. Math. 176 (1996), no. 1, 15–18. Correction: 196 (2000), no. 2, 507–508. Zbl0879.11066MR1433980
- H. Ichimura and H. Sumida, On the Iwasawa invariants of certain real abelian fields II. Inter. J. Math. 7 (1996), no. 6, 721–744. Zbl0881.11075MR1417782
- T. Itoh, Pseudo-null Iwasawa modules for -extensions. Tokyo J. Math. 30 (2007), no. 1, 199–209. Zbl1234.11147MR2328063
- K. Iwasawa, On -extensions of algebraic number fields. Ann. of Math. (2) 98 (1973), 246–326. Zbl0285.12008MR349627
- Y. Kida, On cyclotomic -extensions of imaginary quadratic fields. Tohoku Math. J. (2) 31 (1979), no. 1, 91–96. Zbl0408.12006MR526512
- Y. Kida, Cyclotomic -extensions of -fields. J. Number Theory 14 (1982), no. 3, 340–352. Zbl0493.12015MR660379
- H. Kisilevsky, Number fields with class number congruent to mod and Hilbert’s theorem 94. J. Number Theory 8 (1976), no. 3, 271–279. Zbl0334.12019MR417128
- M. Lazard, Groupes analytiques -adiques. Inst. Hautes Études Sci. Publ. Math. 26 (1965), 389–603. Zbl0139.02302MR209286
- F. Lemmermeyer, On -class field towers of imaginary quadratic number fields. J. Théor. Nombres Bordeaux 6 (1994), no. 2, 261–272. Zbl0826.11052MR1360645
- F. Lemmermeyer, Ideal class groups of cyclotomic number fields I. Acta Arith. 72 (1995), no. 4, 347–359. Zbl0837.11059MR1348202
- B. Mazur and A. Wiles, Class fields of abelian extensions of . Invent. Math. 76 (1984), no. 2, 179–330. Zbl0545.12005MR742853
- Y. Mizusawa, On the maximal unramified pro--extension of -extensions of certain real quadratic fields II. Acta Arith. 119 (2005), no. 1, 93–107. Zbl1151.11055MR2163520
- Y. Mizusawa and M. Ozaki, Abelian -class field towers over the cyclotomic -extensions of imaginary quadratic fields. Math. Ann. 347 (2010, no. 2, 437–453. Zbl1239.11121MR2606944
- K. Okano, Abelian -class field towers over the cyclotomic -extensions of imaginary quadratic fields. Acta Arith. 125 (2006), no. 4, 363–381. Zbl1155.11051MR2271283
- M. Ozaki, Non-Abelian Iwasawa theory of -extensions. (Japanese) Young philosophers in number theory (Kyoto, 2001), RIMS Kôkyûroku 1256 (2002), 25–37. MR1924192
- M. Ozaki, Non-Abelian Iwasawa theory of -extensions. J. Reine Angew. Math. 602 (2007), 59–94. Zbl1123.11034MR2300452
- M. Ozaki and H. Taya, On the Iwasawa -invariants of certain families of real quadratic fields. Manuscripta Math. 94 (1997), no. 4, 437–444. Zbl0935.11040MR1484637
- J.-P. Serre, Galois cohomology. Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. Zbl1004.12003MR1867431
- R. T. Sharifi, On Galois groups of unramified pro- extensions. Math. Ann. 342 (2008) 297–308. Zbl1165.11078MR2425144
- L. C. Washington, Introduction to Cyclotomic Fields (2nd edition). Graduate Texts in Math. vol. 83, Springer, 1997. Zbl0966.11047MR1421575
- A. Wiles, The Iwasawa conjecture for totally real fields. Ann. of Math. (2) 131 (1990), no. 3, 493–540. Zbl0719.11071MR1053488
- K. Wingberg, On the Fontaine-Mazur conjecture for CM-fields. Compositio Math. 131 (2002), no. 3, 341–354. Zbl1038.11074MR1905027
- Y. Yamamoto, Divisibility by of class number of quadratic fields whose -class groups are cyclic. Osaka J. Math. 21 (1984), no. 1, 1–22. Zbl0535.12002MR736966
- K. Yamamura, Maximal unramified extensions of imaginary quadratic number fields of small conductors. J. Théor. Nombres Bordeaux 9 (1997), no. 2, 405–448. Zbl0905.11048MR1617407
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.