Morse index and bifurcation of p-geodesics on semi Riemannian manifolds

Monica Musso; Jacobo Pejsachowicz; Alessandro Portaluri

ESAIM: Control, Optimisation and Calculus of Variations (2007)

  • Volume: 13, Issue: 3, page 598-621
  • ISSN: 1292-8119

Abstract

top
Given a one-parameter family { g λ : λ [ a , b ] } of semi Riemannian metrics on an n-dimensional manifold M, a family of time-dependent potentials { V λ : λ [ a , b ] } and a family { σ λ : λ [ a , b ] } of trajectories connecting two points of the mechanical system defined by ( g λ , V λ ) , we show that there are trajectories bifurcating from the trivial branch σ λ if the generalized Morse indices μ ( σ a ) and μ ( σ b ) are different. If the data are analytic we obtain estimates for the number of bifurcation points on the branch and, in particular, for the number of strictly conjugate points along a trajectory using an explicit computation of the Morse index in the case of locally symmetric spaces and a comparison principle of Morse Schöenberg type.

How to cite

top

Musso, Monica, Pejsachowicz, Jacobo, and Portaluri, Alessandro. "Morse index and bifurcation of p-geodesics on semi Riemannian manifolds." ESAIM: Control, Optimisation and Calculus of Variations 13.3 (2007): 598-621. <http://eudml.org/doc/250003>.

@article{Musso2007,
abstract = { Given a one-parameter family $\\{g_\lambda\colon \lambda\in [a,b]\\}$ of semi Riemannian metrics on an n-dimensional manifold M, a family of time-dependent potentials $\\{ V_\lambda\colon \lambda\in [a,b]\\}$ and a family $\\{\sigma_\lambda\colon \lambda\in [a,b]\\} $ of trajectories connecting two points of the mechanical system defined by $(g_\lambda, V_\lambda)$, we show that there are trajectories bifurcating from the trivial branch $\sigma_\lambda$ if the generalized Morse indices $\mu(\sigma_a)$ and $\mu (\sigma_b)$ are different. If the data are analytic we obtain estimates for the number of bifurcation points on the branch and, in particular, for the number of strictly conjugate points along a trajectory using an explicit computation of the Morse index in the case of locally symmetric spaces and a comparison principle of Morse Schöenberg type. },
author = {Musso, Monica, Pejsachowicz, Jacobo, Portaluri, Alessandro},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Generalized Morse index; semi-Riemannian manifolds; perturbed geodesic; bifurcation; generalized Morse index},
language = {eng},
month = {7},
number = {3},
pages = {598-621},
publisher = {EDP Sciences},
title = {Morse index and bifurcation of p-geodesics on semi Riemannian manifolds},
url = {http://eudml.org/doc/250003},
volume = {13},
year = {2007},
}

TY - JOUR
AU - Musso, Monica
AU - Pejsachowicz, Jacobo
AU - Portaluri, Alessandro
TI - Morse index and bifurcation of p-geodesics on semi Riemannian manifolds
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2007/7//
PB - EDP Sciences
VL - 13
IS - 3
SP - 598
EP - 621
AB - Given a one-parameter family $\{g_\lambda\colon \lambda\in [a,b]\}$ of semi Riemannian metrics on an n-dimensional manifold M, a family of time-dependent potentials $\{ V_\lambda\colon \lambda\in [a,b]\}$ and a family $\{\sigma_\lambda\colon \lambda\in [a,b]\} $ of trajectories connecting two points of the mechanical system defined by $(g_\lambda, V_\lambda)$, we show that there are trajectories bifurcating from the trivial branch $\sigma_\lambda$ if the generalized Morse indices $\mu(\sigma_a)$ and $\mu (\sigma_b)$ are different. If the data are analytic we obtain estimates for the number of bifurcation points on the branch and, in particular, for the number of strictly conjugate points along a trajectory using an explicit computation of the Morse index in the case of locally symmetric spaces and a comparison principle of Morse Schöenberg type.
LA - eng
KW - Generalized Morse index; semi-Riemannian manifolds; perturbed geodesic; bifurcation; generalized Morse index
UR - http://eudml.org/doc/250003
ER -

References

top
  1. R. Abraham and J.E. Marsden, Foundations of Mechanics, 2nd edition. Benjamin/Cummings, Ink. Massachusetts (1978).  
  2. L. Andersson and R. Howard, Comparison and rigidity theorems in Semi-Riemannian geometry. Comm. Anal. Geom.6 (1998) 819–877.  
  3. S.B. Angenent and R. van der Vorst, A priori bounds and renormalized Morse indices of solutions of an elliptic system. Ann. Inst. H. Poincaré Anal. Non Linéaire17 (2000) 277–306.  
  4. V.I. Arnol'd, Sturm theorems and symplectic geometry. Funktsional. Anal. i Prilozhen. 19 (1985) 1–10.  
  5. J.K. Beem, P.E. Ehrlich and K.L. Easley, Global Lorentzian Geometry. Mercel Dekker, Inc. New York and Basel (1996).  
  6. V. Benci, F. Giannoni and A. Masiello, Some properties of the spectral flow in semiriemannian geometry. J. Geom. Phys.27 (1998) 267–280.  
  7. A.L. Besse, Manifolds all of whose geodesics are closed. Ergebnisse der Mathematik und ihrer Grenzgebiete 93, Springer-Verlag (1978).  
  8. O. Bolza, Lectures on Calculus of Variation. Univ. Chicago Press, Chicago (1904).  
  9. S.E. Cappell, R. Lee and E.Y. Miller, On the Maslov index. Comm. Pure Appl. Math.47 (1994) 121–186.  
  10. I. Chavel, Riemannian geometry: a modern introduction, in Cambridge tracts in Mathematics108, Cambridge Univerisity Press (1993).  
  11. P. Chossat, D. Lewis, J.P. Ortega and T.S. Ratiu, Bifurcation of relative equilibria in mechanical systems with symmetry. Adv. Appl. Math.31 (2003) 10–45.  
  12. C. Conley and E. Zehnder, The Birhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold. Invent. Math.73 (1983) 33–49.  
  13. M. Crabb and I. James, Fibrewise Homotopy Theory. Springer-Verlag (1998).  
  14. M. Daniel, An extension of a theorem of Nicolaescu on spectral flow and Maslov index. Proc. Amer. Math. Soc.128 (1999) 611–619.  
  15. K. Deimling, Nonlinear Functional Analysis. Springer-Verlag (1985).  
  16. I. Ekeland, Convexity methods in Hamiltonian systems. Ergebnisse der Mathematik und ihrer Grenzgebiete 19, Springer-Verlag, Berlin (1990).  
  17. Guihua Fei, Relative Morse index and its application to Hamiltonian systems in the presence of symmetries. J. Diff. Eq.122 (1995) 302–315.  
  18. P.M. Fitzpatrick and J. Pejsachowicz, Parity and generalized multiplicity. Trans. Amer. Math. Soc.326 (1991) 281–305.  
  19. P.M. Fitzpatrick, J. Pejsachowicz and L. Recht, Spectral flow and bifurcation of critical points of strongly-indefinite functional. Part I. General theory. J. Funct. Anal.162 (1999) 52–95.  
  20. P.M. Fitzpatrick, J. Pejsachowicz and L. Recht, Spectral flow and bifurcation of critical points of strongly-indefinite functional. Part II. Bifurcation of periodic orbits of Hamiltonian systems. J. Differ. Eq.161 (2000) 18–40.  
  21. A. Floer, Relative Morse index for the symplectic action. Comm. Pure Appl. Math.41 (1989) 335–356.  
  22. I.M. Gel'fand and S.V. Fomin, Calculus of Variations. Prentic-Hall Inc., Englewood Cliffs, New Jersey, USA (1963).  
  23. I.M. Gel'fand and V.B. Lidskii, On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients. Amer. Math. Soc. Transl. Ser. 2 8 (1958) 143–181.  
  24. R. Giambó, P. Piccione and A. Portaluri, On the Maslov Index of Lagrangian paths that are not transversal to the Maslov cycle. Semi-Riemannian index Theorems in the degenerate case. (2003) Preprint.  
  25. A.D. Helfer, Conjugate points on space like geodesics or pseudo self-adjoint Morse-Sturm-Liouville systems. Pacific J. Math.164 (1994) 321–340.  
  26. J. Jost, X. Li-Jost and X.W. Peng, Bifurcation of minimal surfaces in Riemannian manifolds. Trans. Amer. Math. Soc.347 (1995) 51–62.  
  27. T. Kato, Perturbation Theory for linear operators. Grundlehren der Mathematischen Wissenschaften 132, Springer-Verlag (1980).  
  28. W. Klingenberg, Closed geodesics on Riemannian manifolds. CBMS Regional Conference Series in Mathematics53 (1983).  
  29. W. Klingenberg, Riemannian Geometry. de Gruyter, New York (1995).  
  30. M.A. Krasnoselskii, Topological methods in the theory of nonlinear integral equations. Pergamon, New York (1964).  
  31. D.N. Kupeli, On conjugate and focal points in semi-Riemannian geometry. Math. Z.198 (1988) 569–589.  
  32. S. Lang, Differential and Riemannian Manifolds. Springer-Verlag (1995).  
  33. E. Meinrenken, Trace formulas and Conley-Zehnder index. J. Geom. Phys.13 (1994) 1–15.  
  34. J. Milnor, Morse theory. Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies51, Princeton University Press, Princeton, N.J. (1963).  
  35. M. Musso, J. Pejsachowicz and A. Portaluri, A Morse Index Theorem and bifurcation for perturbed geodesics on Semi-Riemannian Manifolds. Topol. Methods Nonlinear Anal.25 (2005) 69–99.  
  36. B. O'Neill, Semi-Riemannian geometry with applications to relativity. Academic Press, New York (1983).  
  37. R.S. Palais, Foundations of global non-linear analysis. W.A. Benjamin, Inc., New York (1968).  
  38. G. Peano, Lezioni di Analisi infinitesimale, Volume I, pp. 120–121, Volume II, pp. 187–195. Tipografia editrice G. Candeletti, Torino (1893).  
  39. P. Piccione, A. Portaluri and D.V. Tausk, Spectral flow, Maslov index and bifurcation of semi-Riemannian geodesics. Ann. Global Anal. Geometry25 (2004) 121–149.  
  40. A. Portaluri, A formula for the Maslov index of linear autonomous Hamiltonian systems. (2004) Preprint.  
  41. A. Portaluri, Morse Index Theorem and Bifurcation theory on semi-Riemannian manifolds. Ph.D. thesis (2004).  
  42. P.J. Rabier, Generalized Jordan chains and two bifurcation theorems of Krasnosel'skii. Nonlinear Anal.13 (1989) 903–934.  
  43. J. Robbin and D. Salamon, The Maslov index for paths. Topology32 (1993) 827-844.  
  44. J. Robbin and D. Salamon, The spectral flow and the Maslov index. Bull. London Math. Soc.27 (1995) 1–33.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.