Morse index and bifurcation of p-geodesics on semi Riemannian manifolds

Monica Musso; Jacobo Pejsachowicz; Alessandro Portaluri

ESAIM: Control, Optimisation and Calculus of Variations (2007)

  • Volume: 13, Issue: 3, page 598-621
  • ISSN: 1292-8119

Abstract

top
Given a one-parameter family { g λ : λ [ a , b ] } of semi Riemannian metrics on an n-dimensional manifold M, a family of time-dependent potentials { V λ : λ [ a , b ] } and a family { σ λ : λ [ a , b ] } of trajectories connecting two points of the mechanical system defined by ( g λ , V λ ) , we show that there are trajectories bifurcating from the trivial branch σ λ if the generalized Morse indices μ ( σ a ) and μ ( σ b ) are different. If the data are analytic we obtain estimates for the number of bifurcation points on the branch and, in particular, for the number of strictly conjugate points along a trajectory using an explicit computation of the Morse index in the case of locally symmetric spaces and a comparison principle of Morse Schöenberg type.

How to cite

top

Musso, Monica, Pejsachowicz, Jacobo, and Portaluri, Alessandro. "Morse index and bifurcation of p-geodesics on semi Riemannian manifolds." ESAIM: Control, Optimisation and Calculus of Variations 13.3 (2007): 598-621. <http://eudml.org/doc/250003>.

@article{Musso2007,
abstract = { Given a one-parameter family $\\{g_\lambda\colon \lambda\in [a,b]\\}$ of semi Riemannian metrics on an n-dimensional manifold M, a family of time-dependent potentials $\\{ V_\lambda\colon \lambda\in [a,b]\\}$ and a family $\\{\sigma_\lambda\colon \lambda\in [a,b]\\} $ of trajectories connecting two points of the mechanical system defined by $(g_\lambda, V_\lambda)$, we show that there are trajectories bifurcating from the trivial branch $\sigma_\lambda$ if the generalized Morse indices $\mu(\sigma_a)$ and $\mu (\sigma_b)$ are different. If the data are analytic we obtain estimates for the number of bifurcation points on the branch and, in particular, for the number of strictly conjugate points along a trajectory using an explicit computation of the Morse index in the case of locally symmetric spaces and a comparison principle of Morse Schöenberg type. },
author = {Musso, Monica, Pejsachowicz, Jacobo, Portaluri, Alessandro},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Generalized Morse index; semi-Riemannian manifolds; perturbed geodesic; bifurcation; generalized Morse index},
language = {eng},
month = {7},
number = {3},
pages = {598-621},
publisher = {EDP Sciences},
title = {Morse index and bifurcation of p-geodesics on semi Riemannian manifolds},
url = {http://eudml.org/doc/250003},
volume = {13},
year = {2007},
}

TY - JOUR
AU - Musso, Monica
AU - Pejsachowicz, Jacobo
AU - Portaluri, Alessandro
TI - Morse index and bifurcation of p-geodesics on semi Riemannian manifolds
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2007/7//
PB - EDP Sciences
VL - 13
IS - 3
SP - 598
EP - 621
AB - Given a one-parameter family $\{g_\lambda\colon \lambda\in [a,b]\}$ of semi Riemannian metrics on an n-dimensional manifold M, a family of time-dependent potentials $\{ V_\lambda\colon \lambda\in [a,b]\}$ and a family $\{\sigma_\lambda\colon \lambda\in [a,b]\} $ of trajectories connecting two points of the mechanical system defined by $(g_\lambda, V_\lambda)$, we show that there are trajectories bifurcating from the trivial branch $\sigma_\lambda$ if the generalized Morse indices $\mu(\sigma_a)$ and $\mu (\sigma_b)$ are different. If the data are analytic we obtain estimates for the number of bifurcation points on the branch and, in particular, for the number of strictly conjugate points along a trajectory using an explicit computation of the Morse index in the case of locally symmetric spaces and a comparison principle of Morse Schöenberg type.
LA - eng
KW - Generalized Morse index; semi-Riemannian manifolds; perturbed geodesic; bifurcation; generalized Morse index
UR - http://eudml.org/doc/250003
ER -

References

top
  1. R. Abraham and J.E. Marsden, Foundations of Mechanics, 2nd edition. Benjamin/Cummings, Ink. Massachusetts (1978).  Zbl0393.70001
  2. L. Andersson and R. Howard, Comparison and rigidity theorems in Semi-Riemannian geometry. Comm. Anal. Geom.6 (1998) 819–877.  Zbl0963.53038
  3. S.B. Angenent and R. van der Vorst, A priori bounds and renormalized Morse indices of solutions of an elliptic system. Ann. Inst. H. Poincaré Anal. Non Linéaire17 (2000) 277–306.  Zbl0964.35037
  4. V.I. Arnol'd, Sturm theorems and symplectic geometry. Funktsional. Anal. i Prilozhen. 19 (1985) 1–10.  
  5. J.K. Beem, P.E. Ehrlich and K.L. Easley, Global Lorentzian Geometry. Mercel Dekker, Inc. New York and Basel (1996).  Zbl0846.53001
  6. V. Benci, F. Giannoni and A. Masiello, Some properties of the spectral flow in semiriemannian geometry. J. Geom. Phys.27 (1998) 267–280.  Zbl0928.53020
  7. A.L. Besse, Manifolds all of whose geodesics are closed. Ergebnisse der Mathematik und ihrer Grenzgebiete 93, Springer-Verlag (1978).  Zbl0387.53010
  8. O. Bolza, Lectures on Calculus of Variation. Univ. Chicago Press, Chicago (1904).  Zbl35.0373.01
  9. S.E. Cappell, R. Lee and E.Y. Miller, On the Maslov index. Comm. Pure Appl. Math.47 (1994) 121–186.  Zbl0805.58022
  10. I. Chavel, Riemannian geometry: a modern introduction, in Cambridge tracts in Mathematics108, Cambridge Univerisity Press (1993).  
  11. P. Chossat, D. Lewis, J.P. Ortega and T.S. Ratiu, Bifurcation of relative equilibria in mechanical systems with symmetry. Adv. Appl. Math.31 (2003) 10–45.  Zbl1025.37032
  12. C. Conley and E. Zehnder, The Birhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold. Invent. Math.73 (1983) 33–49.  Zbl0516.58017
  13. M. Crabb and I. James, Fibrewise Homotopy Theory. Springer-Verlag (1998).  Zbl0905.55001
  14. M. Daniel, An extension of a theorem of Nicolaescu on spectral flow and Maslov index. Proc. Amer. Math. Soc.128 (1999) 611–619.  Zbl0938.58025
  15. K. Deimling, Nonlinear Functional Analysis. Springer-Verlag (1985).  Zbl0559.47040
  16. I. Ekeland, Convexity methods in Hamiltonian systems. Ergebnisse der Mathematik und ihrer Grenzgebiete 19, Springer-Verlag, Berlin (1990).  Zbl0707.70003
  17. Guihua Fei, Relative Morse index and its application to Hamiltonian systems in the presence of symmetries. J. Diff. Eq.122 (1995) 302–315.  Zbl0840.34032
  18. P.M. Fitzpatrick and J. Pejsachowicz, Parity and generalized multiplicity. Trans. Amer. Math. Soc.326 (1991) 281–305.  Zbl0754.47009
  19. P.M. Fitzpatrick, J. Pejsachowicz and L. Recht, Spectral flow and bifurcation of critical points of strongly-indefinite functional. Part I. General theory. J. Funct. Anal.162 (1999) 52–95.  Zbl0915.58091
  20. P.M. Fitzpatrick, J. Pejsachowicz and L. Recht, Spectral flow and bifurcation of critical points of strongly-indefinite functional. Part II. Bifurcation of periodic orbits of Hamiltonian systems. J. Differ. Eq.161 (2000) 18–40.  Zbl0985.37057
  21. A. Floer, Relative Morse index for the symplectic action. Comm. Pure Appl. Math.41 (1989) 335–356.  
  22. I.M. Gel'fand and S.V. Fomin, Calculus of Variations. Prentic-Hall Inc., Englewood Cliffs, New Jersey, USA (1963).  
  23. I.M. Gel'fand and V.B. Lidskii, On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients. Amer. Math. Soc. Transl. Ser. 2 8 (1958) 143–181.  
  24. R. Giambó, P. Piccione and A. Portaluri, On the Maslov Index of Lagrangian paths that are not transversal to the Maslov cycle. Semi-Riemannian index Theorems in the degenerate case. (2003) Preprint.  
  25. A.D. Helfer, Conjugate points on space like geodesics or pseudo self-adjoint Morse-Sturm-Liouville systems. Pacific J. Math.164 (1994) 321–340.  Zbl0799.58018
  26. J. Jost, X. Li-Jost and X.W. Peng, Bifurcation of minimal surfaces in Riemannian manifolds. Trans. Amer. Math. Soc.347 (1995) 51–62.  Zbl0835.53010
  27. T. Kato, Perturbation Theory for linear operators. Grundlehren der Mathematischen Wissenschaften 132, Springer-Verlag (1980).  Zbl0435.47001
  28. W. Klingenberg, Closed geodesics on Riemannian manifolds. CBMS Regional Conference Series in Mathematics53 (1983).  Zbl0545.53035
  29. W. Klingenberg, Riemannian Geometry. de Gruyter, New York (1995).  
  30. M.A. Krasnoselskii, Topological methods in the theory of nonlinear integral equations. Pergamon, New York (1964).  
  31. D.N. Kupeli, On conjugate and focal points in semi-Riemannian geometry. Math. Z.198 (1988) 569–589.  Zbl0658.53059
  32. S. Lang, Differential and Riemannian Manifolds. Springer-Verlag (1995).  Zbl0824.58003
  33. E. Meinrenken, Trace formulas and Conley-Zehnder index. J. Geom. Phys.13 (1994) 1–15.  Zbl0791.53040
  34. J. Milnor, Morse theory. Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies51, Princeton University Press, Princeton, N.J. (1963).  
  35. M. Musso, J. Pejsachowicz and A. Portaluri, A Morse Index Theorem and bifurcation for perturbed geodesics on Semi-Riemannian Manifolds. Topol. Methods Nonlinear Anal.25 (2005) 69–99.  Zbl1101.58012
  36. B. O'Neill, Semi-Riemannian geometry with applications to relativity. Academic Press, New York (1983).  
  37. R.S. Palais, Foundations of global non-linear analysis. W.A. Benjamin, Inc., New York (1968).  Zbl0164.11102
  38. G. Peano, Lezioni di Analisi infinitesimale, Volume I, pp. 120–121, Volume II, pp. 187–195. Tipografia editrice G. Candeletti, Torino (1893).  
  39. P. Piccione, A. Portaluri and D.V. Tausk, Spectral flow, Maslov index and bifurcation of semi-Riemannian geodesics. Ann. Global Anal. Geometry25 (2004) 121–149.  Zbl1050.58015
  40. A. Portaluri, A formula for the Maslov index of linear autonomous Hamiltonian systems. (2004) Preprint.  
  41. A. Portaluri, Morse Index Theorem and Bifurcation theory on semi-Riemannian manifolds. Ph.D. thesis (2004).  
  42. P.J. Rabier, Generalized Jordan chains and two bifurcation theorems of Krasnosel'skii. Nonlinear Anal.13 (1989) 903–934.  Zbl0686.47047
  43. J. Robbin and D. Salamon, The Maslov index for paths. Topology32 (1993) 827-844.  Zbl0798.58018
  44. J. Robbin and D. Salamon, The spectral flow and the Maslov index. Bull. London Math. Soc.27 (1995) 1–33.  Zbl0859.58025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.