Page 1 Next

Displaying 1 – 20 of 66

Showing per page

Diastolic and isoperimetric inequalities on surfaces

Florent Balacheff, Stéphane Sabourau (2010)

Annales scientifiques de l'École Normale Supérieure

We prove a universal inequality between the diastole, defined using a minimax process on the one-cycle space, and the area of closed Riemannian surfaces. Roughly speaking, we show that any closed Riemannian surface can be swept out by a family of multi-loops whose lengths are bounded in terms of the area of the surface. This diastolic inequality, which relies on an upper bound on Cheeger’s constant, yields an effective process to find short closed geodesics on the two-sphere, for instance. We deduce...

Geodesics in Asymmetic Metric Spaces

Andrea C. G. Mennucci (2014)

Analysis and Geometry in Metric Spaces

In a recent paper [17] we studied asymmetric metric spaces; in this context we studied the length of paths, introduced the class of run-continuous paths; and noted that there are different definitions of “length spaces” (also known as “path-metric spaces” or “intrinsic spaces”). In this paper we continue the analysis of asymmetric metric spaces.We propose possible definitions of completeness and (local) compactness.We define the geodesics using as admissible paths the class of run-continuous paths.We...

Currently displaying 1 – 20 of 66

Page 1 Next