Asymptotic behaviour of a class of degenerate elliptic-parabolic operators: a unitary approach
ESAIM: Control, Optimisation and Calculus of Variations (2007)
- Volume: 13, Issue: 4, page 669-691
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topParonetto, Fabio. "Asymptotic behaviour of a class of degenerate elliptic-parabolic operators: a unitary approach." ESAIM: Control, Optimisation and Calculus of Variations 13.4 (2007): 669-691. <http://eudml.org/doc/250006>.
@article{Paronetto2007,
abstract = {
We study the asymptotic behaviour of a sequence of strongly
degenerate parabolic equations $\partial_t (r_h u) - \{\rm div\}(a_h \cdot Du)$
with $r_h(x,t) \geq0$, $r_h \in L^\{\infty\}(\Omega\times (0,T))$.
The main problem is the lack of compactness, by-passed via a regularity result.
As particular cases, we obtain G-convergence for elliptic operators
$(r_h \equiv 0)$,
G-convergence for parabolic operators $(r_h \equiv 1)$, singular perturbations
of an elliptic operator
$(a_h \equiv a$ and $r_h \to r$, possibly $r\equiv 0)$.
},
author = {Paronetto, Fabio},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {G-convergence; PDE of mixed type; linear elliptic and parabolic equations; -convergence; singular perturbations; lack of compactness},
language = {eng},
month = {7},
number = {4},
pages = {669-691},
publisher = {EDP Sciences},
title = {Asymptotic behaviour of a class of degenerate elliptic-parabolic operators: a unitary approach},
url = {http://eudml.org/doc/250006},
volume = {13},
year = {2007},
}
TY - JOUR
AU - Paronetto, Fabio
TI - Asymptotic behaviour of a class of degenerate elliptic-parabolic operators: a unitary approach
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2007/7//
PB - EDP Sciences
VL - 13
IS - 4
SP - 669
EP - 691
AB -
We study the asymptotic behaviour of a sequence of strongly
degenerate parabolic equations $\partial_t (r_h u) - {\rm div}(a_h \cdot Du)$
with $r_h(x,t) \geq0$, $r_h \in L^{\infty}(\Omega\times (0,T))$.
The main problem is the lack of compactness, by-passed via a regularity result.
As particular cases, we obtain G-convergence for elliptic operators
$(r_h \equiv 0)$,
G-convergence for parabolic operators $(r_h \equiv 1)$, singular perturbations
of an elliptic operator
$(a_h \equiv a$ and $r_h \to r$, possibly $r\equiv 0)$.
LA - eng
KW - G-convergence; PDE of mixed type; linear elliptic and parabolic equations; -convergence; singular perturbations; lack of compactness
UR - http://eudml.org/doc/250006
ER -
References
top- R.W. Carroll and R.E. Showalter, Singular and Degenerate Cauchy Problems. Academic Press, New York (1976).
- V. Chiadò Piat, G. Dal Maso and A. Defranceschi, G-convergence of monotone operators. Ann. Inst. H. Poincaré, Anal. Non Linéaire7 (1990) 123–160.
- F. Colombini and S. Spagnolo, Sur la convergence de solutions d'équations paraboliques. J. Math. Pur. Appl. 56 (1977) 263–306.
- G. Dal Maso, An introduction to Γ-convergence. Birkhäuser, Boston (1993).
- E. De Giorgi and S. Spagnolo, Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine. Boll. Un. Mat. Ital.8 (1973) 391–411.
- L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, USA (1992).
- A. Pankov, G-convergence and Homogenization of Nonlinear Partial Differential Operators. Kluwer Academic Publishers, Dordrecht (1997).
- F. Paronetto, Existence results for a class of evolution equations of mixed type. J. Funct. Anal. 212 (2004) 324–356.
- F. Paronetto, Homogenization of degenerate elliptic-parabolic equations. Asymptotic Anal. 37 (2004) 21–56.
- R.E. Showalter, Degenerate parabolic initial-boundary value problems. J. Diff. Eq. 31 (1979) 296–312.
- R.E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. American Mathematical Society (1997).
- J. Simon, Compact sets in the space . Ann. Mat. Pura Appl.146 (1987) 65–96.
- S. Spagnolo, Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 21 (1967) 657–699.
- S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1968) 571–597.
- S. Spagnolo, Convergence of parabolic equations. Boll. Un. Mat. Ital. 14-B (1977) 547–568.
- L. Tartar, Convergence d'operateurs defferentiels, Proceedings of the Meeting “Analisi convessa e Applicazioni”. Roma (1974).
- L. Tartar, Cours Peccot, Collège de France, 1977. Partially written in: F. Murat, H-convergence - Séminaire d'Analyse Fonctionnelle et Numérique, Université d'Alger, 1977-78. English translation: F. Murat and L. Tartar: H-Convergence, in Topics in the Mathematical Modelling of Composite Materials, A. Cherkaev, R. Kohn, Editors, Birkhäuser, Boston (1997) 21–43.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.