# Optimal partial regularity of minimizers of quasiconvex variational integrals

ESAIM: Control, Optimisation and Calculus of Variations (2007)

- Volume: 13, Issue: 4, page 639-656
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topHamburger, Christoph. "Optimal partial regularity of minimizers of quasiconvex variational integrals." ESAIM: Control, Optimisation and Calculus of Variations 13.4 (2007): 639-656. <http://eudml.org/doc/250009>.

@article{Hamburger2007,

abstract = {
We prove partial regularity with optimal Hölder exponent of
vector-valued minimizers u of the quasiconvex variational integral $\int
F( x,u,Du) \,\{\rm d\}x$ under polynomial growth. We employ the indirect
method of the bilinear form.
},

author = {Hamburger, Christoph},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Partial regularity; optimal regularity;
minimizer; calculus of variations; quasiconvexity; minimizer},

language = {eng},

month = {9},

number = {4},

pages = {639-656},

publisher = {EDP Sciences},

title = {Optimal partial regularity of minimizers of quasiconvex variational integrals},

url = {http://eudml.org/doc/250009},

volume = {13},

year = {2007},

}

TY - JOUR

AU - Hamburger, Christoph

TI - Optimal partial regularity of minimizers of quasiconvex variational integrals

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2007/9//

PB - EDP Sciences

VL - 13

IS - 4

SP - 639

EP - 656

AB -
We prove partial regularity with optimal Hölder exponent of
vector-valued minimizers u of the quasiconvex variational integral $\int
F( x,u,Du) \,{\rm d}x$ under polynomial growth. We employ the indirect
method of the bilinear form.

LA - eng

KW - Partial regularity; optimal regularity;
minimizer; calculus of variations; quasiconvexity; minimizer

UR - http://eudml.org/doc/250009

ER -

## References

top- E. Acerbi and N. Fusco, A regularity theorem for minimizers of quasiconvex integrals. Arch. Ration. Mech. Anal.99 (1987) 261–281.
- F. Duzaar, A. Gastel and J.F. Grotowski, Partial regularity for almost minimizers of quasi-convex integrals. SIAM J. Math. Anal.32 (2000) 665–687.
- L.C. Evans, Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal.95 (1986) 227–252.
- L.C. Evans and R.F. Gariepy, Blowup, compactness and partial regularity in the calculus of variations. Indiana Univ. Math. J.36 (1987) 361–371.
- N. Fusco and J. Hutchinson, ${C}^{1,\alpha}$ partial regularity of functions minimising quasiconvex integrals. Manuscr. Math.54 (1985) 121–143.
- M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems. Princeton Univ. Press, Princeton (1983).
- M. Giaquinta, The problem of the regularity of minimizers. Proc. Int. Congr. Math., Berkeley 1986 (1987) 1072–1083.
- M. Giaquinta, Quasiconvexity, growth conditions and partial regularity. Partial differential equations and calculus of variations, Lect. Notes Math.1357 (1988) 211–237.
- M. Giaquinta and E. Giusti, On the regularity of the minima of variational integrals. Acta Math.148 (1982) 31–46.
- M. Giaquinta and E. Giusti, Differentiability of minima of non-differentiable functionals. Invent. Math.72 (1983) 285–298.
- M. Giaquinta and E. Giusti, Sharp estimates for the derivatives of local minima of variational integrals. Boll. Unione Mat. Ital.3A (1984) 239–248.
- M. Giaquinta and P.-A. Ivert, Partial regularity for minima of variational integrals. Ark. Mat.25 (1987) 221–229.
- M. Giaquinta and G. Modica, Partial regularity of minimizers of quasiconvex integrals. Ann. Inst. Henri Poincaré, Anal. Non Linéaire3 (1986) 185–208.
- E. Giusti, Metodi diretti nel calcolo delle variazioni. UMI, Bologna (1994).
- C. Hamburger, Partial regularity for minimizers of variational integrals with discontinuous integrands. Ann. Inst. Henri Poincaré, Anal. Non Linéaire13 (1996) 255–282.
- C. Hamburger, A new partial regularity proof for solutions of nonlinear elliptic systems. Manuscr. Math.95 (1998) 11–31.
- C. Hamburger, Partial regularity of minimizers of polyconvex variational integrals. Calc. Var.18 (2003) 221–241.
- C. Hamburger, Partial regularity of solutions of nonlinear quasimonotone systems. Hokkaido Math. J.32 (2003) 291–316.
- C. Hamburger, Partial boundary regularity of solutions of nonlinear superelliptic systems. Boll. Unione Mat. Ital.10B (2007) 63–81.
- M.-C. Hong, Existence and partial regularity in the calculus of variations. Ann. Mat. Pura Appl.149 (1987) 311–328.
- J. Kristensen and G. Mingione, The singular set of $\omega $-minima. Arch. Ration. Mech. Anal.177 (2005) 93–114.
- J. Kristensen and G. Mingione, The singular set of minima of integral functionals. Arch. Ration. Mech. Anal.180 (2006) 331–398.
- J. Kristensen and G. Mingione, The singular set of Lipschitzian minima of multiple integrals. Arch. Ration. Mech. Anal.184 (2007) 341–369.
- D. Phillips, A minimization problem and the regularity of solutions in the presence of a free boundary. Indiana Univ. Math. J.32 (1983) 1–17.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.