Partial regularity for minimizers of variational integrals with discontinuous integrands

Christoph Hamburger

Annales de l'I.H.P. Analyse non linéaire (1996)

  • Volume: 13, Issue: 3, page 255-282
  • ISSN: 0294-1449

How to cite

top

Hamburger, Christoph. "Partial regularity for minimizers of variational integrals with discontinuous integrands." Annales de l'I.H.P. Analyse non linéaire 13.3 (1996): 255-282. <http://eudml.org/doc/78382>.

@article{Hamburger1996,
author = {Hamburger, Christoph},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quasiconvexity; discontinuous integrand; strict convexity},
language = {eng},
number = {3},
pages = {255-282},
publisher = {Gauthier-Villars},
title = {Partial regularity for minimizers of variational integrals with discontinuous integrands},
url = {http://eudml.org/doc/78382},
volume = {13},
year = {1996},
}

TY - JOUR
AU - Hamburger, Christoph
TI - Partial regularity for minimizers of variational integrals with discontinuous integrands
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 3
SP - 255
EP - 282
LA - eng
KW - quasiconvexity; discontinuous integrand; strict convexity
UR - http://eudml.org/doc/78382
ER -

References

top
  1. [A-F] E. Acerbi and N. Fusco, A regularity theorem for minimizers of quasiconvex integrals. Arch. Rational Mech. Anal., Vol. 99, 1987, pp. 261-281. Zbl0627.49007MR888453
  2. [E1] L.C. Evans, Quasiconvexity and partial regularity in the calculus of variations. Arch. Rational Mech. Anal., Vol. 95, 1986, pp. 227-252. Zbl0627.49006MR853966
  3. [E2] L.C. Evans, Weak convergence methods for nonlinear partial differential equations. Regional conference series in mathematics, Vol. 74, AMS, Providence, 1990. Zbl0698.35004MR1034481
  4. [E-G1] L.C. Evans and R.F. Gariepy, Blow-up, compactness and partial regularity in the calculus of variations. Indiana Univ. Math. J., Vol. 36, 1987, pp. 361-371. Zbl0626.49007MR891780
  5. [E-G2] L.C. Evans and R.F. Gariepy, Some remarks concerning quasiconvexity and strong convergence. Proc. Royal Soc. Edinburgh, Vol. 106A, 1987, pp. 53-61. Zbl0628.49011MR899940
  6. [F-H] N. Fusco and J. Hutchinson, C1,α partial regularity of functions minimising quasiconvex integrals. Manuscripta math., Vol. 54, 1985, pp. 121-143. Zbl0587.49005MR808684
  7. [G1] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems. Princeton Univ. Press, Princeton, 1983. Zbl0516.49003MR717034
  8. [G2] M. Giaquinta, The problem of the regularity of minimizers. International congress of mathematicians, Berkeley, 1986. Zbl0667.49029MR934310
  9. [G3] M. Giaquinta, Quasiconvexity, growth conditions and partial regularity. In: S. HILDEBRANDT and R. LEIS (Eds.) Partial differential equations and calculus of variations. Lecture notes in mathematics, Vol. 1357, Springer, Berlin, 1988. Zbl0658.49006MR976237
  10. [G-G1] M. Giaquinta and E. Giusti, On the regularity of the minima of variational integrals. Acta Math., Vol. 148, 1982, pp. 31-46. Zbl0494.49031MR666107
  11. [G-G2] M. Giaquinta and E. Giusti, Differentiability of minima of nondifferentiable functionals. Inv. Math., Vol. 72, 1983, pp. 285-298. Zbl0513.49003MR700772
  12. [G-M] M. Giaquinta and G. Modica, Partial regularity of minimizers of quasiconvex integrals. Ann. Inst. H. Poincaré, Analyse non linéaire, Vol 3, 1986, pp. 185-208. Zbl0594.49004MR847306
  13. [H] C. Hamburger, An elementary partial regularity proof for solutions of nonlinear elliptic systems. SFB256, Bonn, Preprint 353, 1994. MR1014470
  14. [Ho] M.C. Hong, Existence and partial regularity in the calculus of variations. Ann. Mat. Pura Appl., Vol. 149, 1987, pp. 311-328. Zbl0648.49008MR932791
  15. [R] W. Rudin, Real and complex analysis. McGraw-Hill, New York, 1987. Zbl0925.00005MR924157

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.